Multivalent systems are well known for their enhanced ability to bind multivalent counterparts. This contribution addresses the question whether they can also behave as cooperative catalysts. Analyzing examples from our own laboratory we show that self-assembled systems obtained by covering gold nanoclusters with thiol-terminated amino acids and peptides behave indeed as cooperative catalysts. By comparing their activity profiles with those of discrete, multivalent systems we show what are minimal conditions to elicit cooperativity in multivalent systems. Reactions taken into considerations for our analysis are the hydrolyses of carboxylate- and phosphate esters. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.

Cooperative nanosystems

FATTORUSSO, Roberto;
2008

Abstract

Multivalent systems are well known for their enhanced ability to bind multivalent counterparts. This contribution addresses the question whether they can also behave as cooperative catalysts. Analyzing examples from our own laboratory we show that self-assembled systems obtained by covering gold nanoclusters with thiol-terminated amino acids and peptides behave indeed as cooperative catalysts. By comparing their activity profiles with those of discrete, multivalent systems we show what are minimal conditions to elicit cooperativity in multivalent systems. Reactions taken into considerations for our analysis are the hydrolyses of carboxylate- and phosphate esters. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/225105
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 1
social impact