The molecular mechanisms underlying primary glucocorticoid resistance or hypersensitivity are not well understood. Using transfected COS-1 cells as a model system, we studied gene regulation by naturally occurring mutants of the glucocorticoid receptor (GR) with single-point mutations in the regions encoding the ligand-binding domain or the N-terminal domain reflecting different phenotypic expression. We analyzed the capacity of these GR variants to regulate transcription from different promoters, either by binding directly to positive or negative glucocorticoid-response elements on the DNA or by interfering with protein-protein interactions. Decreased dexamethasone (DEX) binding to GR variants carrying mutations in the ligand- binding domain correlated well with decreased capacity to activate transcription from the mouse mammary tumor virus (MMTV) promoter. One variant, D641V, which suboptimally activated MMTV promoter-mediated transcription, repressed a PRL promoter element containing a negative glucocorticoid-response element with wild type activity. DEX-induced repression of transcription from elements of the intercellular adhesion molecule-1 promoter via nuclear factor-κB by the D641V variant was even more efficient compared with the wild type GR. We observed a general DEX- responsive AP-1-mediated transcriptional repression of the collagenase-1 promoter, even when receptor variants did not activate transcription from the MMTV promoter. Our findings indicate that different point mutations in the GR can affect separate pathways of gene regulation in a differential fashion, which can explain the various phenotypes observed.

Differential hormone-dependent transcriptional activation and - repression by naturally occurring human glucocorticoid receptor variants

DE LANGE, Pieter;
1997

Abstract

The molecular mechanisms underlying primary glucocorticoid resistance or hypersensitivity are not well understood. Using transfected COS-1 cells as a model system, we studied gene regulation by naturally occurring mutants of the glucocorticoid receptor (GR) with single-point mutations in the regions encoding the ligand-binding domain or the N-terminal domain reflecting different phenotypic expression. We analyzed the capacity of these GR variants to regulate transcription from different promoters, either by binding directly to positive or negative glucocorticoid-response elements on the DNA or by interfering with protein-protein interactions. Decreased dexamethasone (DEX) binding to GR variants carrying mutations in the ligand- binding domain correlated well with decreased capacity to activate transcription from the mouse mammary tumor virus (MMTV) promoter. One variant, D641V, which suboptimally activated MMTV promoter-mediated transcription, repressed a PRL promoter element containing a negative glucocorticoid-response element with wild type activity. DEX-induced repression of transcription from elements of the intercellular adhesion molecule-1 promoter via nuclear factor-κB by the D641V variant was even more efficient compared with the wild type GR. We observed a general DEX- responsive AP-1-mediated transcriptional repression of the collagenase-1 promoter, even when receptor variants did not activate transcription from the MMTV promoter. Our findings indicate that different point mutations in the GR can affect separate pathways of gene regulation in a differential fashion, which can explain the various phenotypes observed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/219601
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 102
  • ???jsp.display-item.citation.isi??? 98
social impact