The results obtained with a glucose biosensor operating under non-isothermal conditions are presented and discussed. Glucose oxidase, immobilized onto Nylon membranes, was used as biological element. An amperometric two electrodes system was employed to measure the anodic current produced by oxidation of hydrogen peroxide. Non-isothermal conditions were characterized in terms of the temperature difference, ΔT = Tw-Tc, and of the average temperature of the system, Tav = (Tw+Tc)/ 2, Tw and Tc being the temperature in the warm and cold half-cells constituting the biosensor. Comparison between the functioning of the biosensor under isothermal and non-isothermal conditions was performed. It was found that, under non-isothermal conditions, the dynamic response and sensitivity increased, while the response times and the detection limit decreased, if comparison was done with the same parameters measured under isothermal conditions. The increase of the dynamic response was found to be proportional to the applied temperature gradient.

The results obtained with a glucose biosensor operating under non-isothermal conditions are presented and discussed. Glucose oxidase, immobilized onto Nylon membranes, was used as biological element. An amperometric two electrodes system was employed to measure the anodic current produced by oxidation of hydrogen peroxide. Non-isothermal conditions were characterized in terms of the temperature difference, ΔT = Tw-Tc, and of the average temperature of the system, Tav = (Tw+Tc)/ 2, Tw and Tc being the temperature in the warm and cold half-cells constituting the biosensor. Comparison between the functioning of the biosensor under isothermal and non-isothermal conditions was performed. It was found that, under non-isothermal conditions, the dynamic response and sensitivity increased, while the response times and the detection limit decreased, if comparison was done with the same parameters measured under isothermal conditions. The increase of the dynamic response was found to be proportional to the applied temperature gradient.

A glucose biosensor operating under non-isothermal conditions: The dynamic response

PORTACCIO, Marianna Bianca Emanuela;ROSSI, Settimio;
1999

Abstract

The results obtained with a glucose biosensor operating under non-isothermal conditions are presented and discussed. Glucose oxidase, immobilized onto Nylon membranes, was used as biological element. An amperometric two electrodes system was employed to measure the anodic current produced by oxidation of hydrogen peroxide. Non-isothermal conditions were characterized in terms of the temperature difference, ΔT = Tw-Tc, and of the average temperature of the system, Tav = (Tw+Tc)/ 2, Tw and Tc being the temperature in the warm and cold half-cells constituting the biosensor. Comparison between the functioning of the biosensor under isothermal and non-isothermal conditions was performed. It was found that, under non-isothermal conditions, the dynamic response and sensitivity increased, while the response times and the detection limit decreased, if comparison was done with the same parameters measured under isothermal conditions. The increase of the dynamic response was found to be proportional to the applied temperature gradient.
The results obtained with a glucose biosensor operating under non-isothermal conditions are presented and discussed. Glucose oxidase, immobilized onto Nylon membranes, was used as biological element. An amperometric two electrodes system was employed to measure the anodic current produced by oxidation of hydrogen peroxide. Non-isothermal conditions were characterized in terms of the temperature difference, ΔT = Tw-Tc, and of the average temperature of the system, Tav = (Tw+Tc)/ 2, Tw and Tc being the temperature in the warm and cold half-cells constituting the biosensor. Comparison between the functioning of the biosensor under isothermal and non-isothermal conditions was performed. It was found that, under non-isothermal conditions, the dynamic response and sensitivity increased, while the response times and the detection limit decreased, if comparison was done with the same parameters measured under isothermal conditions. The increase of the dynamic response was found to be proportional to the applied temperature gradient.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11591/215731
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact