Background: In vitro investigations suggest that enamel matrix derivative (EMD) may affect the biologic response of periodontal-related cells, including osteoblasts and their precursors, the bone marrow stromal cells (BMSCs), which could play a crucial role in the regenerative process. In this study, we investigated the effects of EMD on human BMSCs. Methods: Primary cultures of BMSCs were obtained from bone marrow samples of healthy donors. Cell proliferation and osteogenic marker expression in response to serial dilutions of EMD (12.5, 25, and 50 mu g/ml) were assessed. Cell growth was measured by H-3-thymidine incorporation and type I collagen synthesis by immunoblotting. Alkaline phosphatase (AP)-specific activity in the early phase (7 days), in vitro mineralization by von Kossa staining and calcium quantification, and osteocalcin levels at prolonged times (3 weeks) also were evaluated. Results: EMD stimulated BMSC growth in a dose-dependent manner. When EMD 50 mu g/ml was followed over time, the highest proliferative effect was evident at 24 hours (3.4-fold of the control). Type I collagen level was significantly lower than the control after a 7-day incubation with EMD 50 mu g/ml. AP activity was reduced in a dose-dependent manner down to 55% of the control. Also, the extracellular matrix mineralization decreased in EMD-treated cells with respect to the control, whereas only a slight, not significant, decrease in osteocalcin levels was found. Conclusions: EMD significantly increased BMSC growth and simultaneously decreased their osteogenic differentiation. The clinical efficacy of EMD in regenerating periodontal tissues can be attributed, in part, to the biologic effects exerted on the bone marrow stromal component of resident cells.

In vitro biologic response of human bone marrow stromal cells to enamel matrix derivative

GUIDA, Luigi;ANNUNZIATA, Marco;OLIVA, Adriana
2007

Abstract

Background: In vitro investigations suggest that enamel matrix derivative (EMD) may affect the biologic response of periodontal-related cells, including osteoblasts and their precursors, the bone marrow stromal cells (BMSCs), which could play a crucial role in the regenerative process. In this study, we investigated the effects of EMD on human BMSCs. Methods: Primary cultures of BMSCs were obtained from bone marrow samples of healthy donors. Cell proliferation and osteogenic marker expression in response to serial dilutions of EMD (12.5, 25, and 50 mu g/ml) were assessed. Cell growth was measured by H-3-thymidine incorporation and type I collagen synthesis by immunoblotting. Alkaline phosphatase (AP)-specific activity in the early phase (7 days), in vitro mineralization by von Kossa staining and calcium quantification, and osteocalcin levels at prolonged times (3 weeks) also were evaluated. Results: EMD stimulated BMSC growth in a dose-dependent manner. When EMD 50 mu g/ml was followed over time, the highest proliferative effect was evident at 24 hours (3.4-fold of the control). Type I collagen level was significantly lower than the control after a 7-day incubation with EMD 50 mu g/ml. AP activity was reduced in a dose-dependent manner down to 55% of the control. Also, the extracellular matrix mineralization decreased in EMD-treated cells with respect to the control, whereas only a slight, not significant, decrease in osteocalcin levels was found. Conclusions: EMD significantly increased BMSC growth and simultaneously decreased their osteogenic differentiation. The clinical efficacy of EMD in regenerating periodontal tissues can be attributed, in part, to the biologic effects exerted on the bone marrow stromal component of resident cells.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/204470
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 28
social impact