A new modified β-cyclodextrin (β-CD) derivative 1 that was functionalized in position 6 with Boc-Carcinine was synthesised and its crystal structure was determined. The structure reveals a 'sleeping swan'- like shape, the covalently bonded Boc-Carcinine moiety forming a folded structure with the Boc group inserted within the hydrophobic cavity of the β-cyclodextrin. The conformation of the Carcinine moiety is determined by the inclusion of the Boc group and is further stabilised by three intramolecular hydrogen bonds, two between the amide N1-H group, the carbonyl C'1=O1 group and a primary hydroxylic group of the glucose unit 5, one between the carbonyl C'O=O0 group and the primary hydroxylic group of the glucose unit 2. The β-CD macrocycle differs only slightly from unmodified β-CDs, maintaining an approximate sevenfold symmetry. The solution structure of the new β-CD derivative was investigated by NMR spectroscopy and circular dichroism (c.d.) spectroscopy. In addition to a complete (1H and 13C) assignment of the pendant Boc-Carcinine group, the NMR study allowed the assignment of all the proton resonances associated with the β-CD macrocycle. Furthermore, NMR and c.d. results indicated that the self-inclusion of the Boc group within the β-CD cavity is retained in aqueous solution. In order to estimate the strength of this self-inclusion complex a series of competition experiments with the external guest 1-adamantanol was carried out using c.d. spectroscopy.

Solid state and solution conformation of 6-{4-[N-tert-butoxycarbonyl-N- (N'-ethyl)propanamide]imidazolyl}-6-deoxycyclomaltoheptaose: Evidence of self-inclusion of the Boc group within the β-cyclodextrin cavity

IACOVINO, Rosa;
2000

Abstract

A new modified β-cyclodextrin (β-CD) derivative 1 that was functionalized in position 6 with Boc-Carcinine was synthesised and its crystal structure was determined. The structure reveals a 'sleeping swan'- like shape, the covalently bonded Boc-Carcinine moiety forming a folded structure with the Boc group inserted within the hydrophobic cavity of the β-cyclodextrin. The conformation of the Carcinine moiety is determined by the inclusion of the Boc group and is further stabilised by three intramolecular hydrogen bonds, two between the amide N1-H group, the carbonyl C'1=O1 group and a primary hydroxylic group of the glucose unit 5, one between the carbonyl C'O=O0 group and the primary hydroxylic group of the glucose unit 2. The β-CD macrocycle differs only slightly from unmodified β-CDs, maintaining an approximate sevenfold symmetry. The solution structure of the new β-CD derivative was investigated by NMR spectroscopy and circular dichroism (c.d.) spectroscopy. In addition to a complete (1H and 13C) assignment of the pendant Boc-Carcinine group, the NMR study allowed the assignment of all the proton resonances associated with the β-CD macrocycle. Furthermore, NMR and c.d. results indicated that the self-inclusion of the Boc group within the β-CD cavity is retained in aqueous solution. In order to estimate the strength of this self-inclusion complex a series of competition experiments with the external guest 1-adamantanol was carried out using c.d. spectroscopy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/201323
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 23
social impact