In this short note we give a new and correct proof of a result of Ferri and Ferri on q^2–caps of AG(3, q), moreover we prove that sets of AG(3, q) of type (1, q,q + 1) with respect to the planes of AG(3, q) have size at most q2 with equality if and only if K is a cap.

Note on a class of subsets of AG(3, q) with intersection numbers 1, q, n with respect to the planes

NAPOLITANO, Vito
2013

Abstract

In this short note we give a new and correct proof of a result of Ferri and Ferri on q^2–caps of AG(3, q), moreover we prove that sets of AG(3, q) of type (1, q,q + 1) with respect to the planes of AG(3, q) have size at most q2 with equality if and only if K is a cap.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/199961
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact