Antisense oligodeoxynucleotides (ODNs) are short stretches of DNA complementary to a target mRNA. The ODNs selectively hybridise to their complementary RNA by Watson-Crick base pairing rules. In theory, the use of antisense ODNs provides a method to specifically inhibit the intracellular expression of any disorder whose genetic aetiology is well known. For this reason, researchers thought that if antisense drugs proved to be so specific there would be no side effects. However, toxicity-related problems arose in initial animal studies of antisense drugs in the early 1990s and since then companies have been using these compounds cautiously. In order to be useful therapeutically, an ODN must (a) exhibit reasonable stability in the physiological environment, (b) be taken up and retained in adequate quantities by the target cells, (c) specifically bind target mRNA with high affinity, (d) have an acceptable therapeutic ratio, free of unwanted toxic and non-specific side effects and (e) be easily synthesised in sufficient quantities to allow clinical use. Most of these criteria have already been met by ODNs recently used in this way. This review describes certain therapeutic applications of antisense techniques currently under investigation in oncology, haematopathology and inflammatory diseases
Clinical trials of a new class of therapeutic agents: antisense oligonucleotides
GALDERISI, Umberto;CIPOLLARO, Marilena;
2001
Abstract
Antisense oligodeoxynucleotides (ODNs) are short stretches of DNA complementary to a target mRNA. The ODNs selectively hybridise to their complementary RNA by Watson-Crick base pairing rules. In theory, the use of antisense ODNs provides a method to specifically inhibit the intracellular expression of any disorder whose genetic aetiology is well known. For this reason, researchers thought that if antisense drugs proved to be so specific there would be no side effects. However, toxicity-related problems arose in initial animal studies of antisense drugs in the early 1990s and since then companies have been using these compounds cautiously. In order to be useful therapeutically, an ODN must (a) exhibit reasonable stability in the physiological environment, (b) be taken up and retained in adequate quantities by the target cells, (c) specifically bind target mRNA with high affinity, (d) have an acceptable therapeutic ratio, free of unwanted toxic and non-specific side effects and (e) be easily synthesised in sufficient quantities to allow clinical use. Most of these criteria have already been met by ODNs recently used in this way. This review describes certain therapeutic applications of antisense techniques currently under investigation in oncology, haematopathology and inflammatory diseasesI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.