The effect of fuel composition on gasification process performance was investigated by performing mass and energy balances on a pre-pilot scale bubbling fluidized bed reactor fed with mixtures of plastic waste, wood, and coal. The fuels containing plastic waste produced less H2, CO, and CO2 and more light hydrocarbons than the fuels including biomass. The lower heating value (LHV) progressively increased from 5.1 to 7.9 MJ/Nm3 when the plastic waste fraction was moved from 0% to 100%. Higher carbonaceous fines production was associated with the fuel containing a large fraction of coal (60%), producing 87.5 g/kgFuel compared to only 1.0 g/kgFuel obtained during the gasification test with just plastic waste. Conversely, plastic waste gasification produced the highest tar yield, 161.9 g/kgFuel, while woody biomass generated only 13.4 g/kgFuel. Wood gasification showed a carbon conversion efficiency (CCE) of 0.93, while the tests with two fuels containing coal showed lowest CCE values (0.78 and 0.70, respectively). Plastic waste and wood gasification presented similar cold gas efficiency (CGE) values (0.75 and 0.76, respectively), while that obtained during the co-gasification tests varied from 0.53 to 0.73.

Fluidized-bed gasification of plastic waste, wood, and their blends with coal

ZACCARIELLO, Lucio;MASTELLONE, Maria Laura
2015

Abstract

The effect of fuel composition on gasification process performance was investigated by performing mass and energy balances on a pre-pilot scale bubbling fluidized bed reactor fed with mixtures of plastic waste, wood, and coal. The fuels containing plastic waste produced less H2, CO, and CO2 and more light hydrocarbons than the fuels including biomass. The lower heating value (LHV) progressively increased from 5.1 to 7.9 MJ/Nm3 when the plastic waste fraction was moved from 0% to 100%. Higher carbonaceous fines production was associated with the fuel containing a large fraction of coal (60%), producing 87.5 g/kgFuel compared to only 1.0 g/kgFuel obtained during the gasification test with just plastic waste. Conversely, plastic waste gasification produced the highest tar yield, 161.9 g/kgFuel, while woody biomass generated only 13.4 g/kgFuel. Wood gasification showed a carbon conversion efficiency (CCE) of 0.93, while the tests with two fuels containing coal showed lowest CCE values (0.78 and 0.70, respectively). Plastic waste and wood gasification presented similar cold gas efficiency (CGE) values (0.75 and 0.76, respectively), while that obtained during the co-gasification tests varied from 0.53 to 0.73.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/195754
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 49
social impact