p27Kip1 is a critical modulator of cell proliferation by controlling assembly, localization and activity of cyclin-dependent kinase (CDK). p27Kip1 also plays important roles in malignant transformation, modulating cell movement and interaction with the extracellular matrix. A critical p27Kip1 feature is the lack of a stable tertiary structure that enhances its "adaptability" to different interactors and explains the heterogeneity of its function. The absence of a well-defined folding underlines the importance of p27Kip1 post-translational modifications that might highly impact the protein functions. Here, we characterize the metabolism and CDK interaction of phosphoserine10-p27Kip1 (pS10- p27Kip1), the major phosphoisoform of p27Kip1. By an experimental strategy based on specific immunoprecipitation and bidimensional electrophoresis, we established that pS10-p27Kip1 is mainly bound to cyclin E/CDK2 rather than to cyclin A/CDK2. pS10- p27Kip1 is more stable than non-modified p27Kip1, since it is not (or scarcely) phosphorylated on T187, the post-translational modification required for p27Kip1 removal in the nucleus. pS10-p27Kip1 does not bind CDK1. The lack of this interaction might represent a mechanism for facilitating CDK1 activation and allowing mitosis completion. In conclusion, we suggest that nuclear p27Kip1 follows two almost independent pathways operating at different rates. One pathway involves threonine-187 and tyrosine phosphorylations and drives the protein towards its Skp2-dependent removal. The other involves serine-10 phosphorylation and results in the elongation of p27Kip1 half-life and specific CDK interactions. Thus, pS10-p27Kip1, due to its stability, might be thought as a major responsible for the p27Kip1-dependent arrest of cells in G1/G0 phase.

p27Kip1 serine 10 phosphorylation determines its metabolism and interaction with cyclin-dependent kinases.

Bencivenga, Debora;OLIVA, Adriana;PERROTTA, Silverio;DELLA RAGIONE, Fulvio;BORRIELLO, Adriana
2014

Abstract

p27Kip1 is a critical modulator of cell proliferation by controlling assembly, localization and activity of cyclin-dependent kinase (CDK). p27Kip1 also plays important roles in malignant transformation, modulating cell movement and interaction with the extracellular matrix. A critical p27Kip1 feature is the lack of a stable tertiary structure that enhances its "adaptability" to different interactors and explains the heterogeneity of its function. The absence of a well-defined folding underlines the importance of p27Kip1 post-translational modifications that might highly impact the protein functions. Here, we characterize the metabolism and CDK interaction of phosphoserine10-p27Kip1 (pS10- p27Kip1), the major phosphoisoform of p27Kip1. By an experimental strategy based on specific immunoprecipitation and bidimensional electrophoresis, we established that pS10-p27Kip1 is mainly bound to cyclin E/CDK2 rather than to cyclin A/CDK2. pS10- p27Kip1 is more stable than non-modified p27Kip1, since it is not (or scarcely) phosphorylated on T187, the post-translational modification required for p27Kip1 removal in the nucleus. pS10-p27Kip1 does not bind CDK1. The lack of this interaction might represent a mechanism for facilitating CDK1 activation and allowing mitosis completion. In conclusion, we suggest that nuclear p27Kip1 follows two almost independent pathways operating at different rates. One pathway involves threonine-187 and tyrosine phosphorylations and drives the protein towards its Skp2-dependent removal. The other involves serine-10 phosphorylation and results in the elongation of p27Kip1 half-life and specific CDK interactions. Thus, pS10-p27Kip1, due to its stability, might be thought as a major responsible for the p27Kip1-dependent arrest of cells in G1/G0 phase.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/195592
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact