Insulin-like growth factor-I receptor (IGF-IR) overexpression may play a role in prostate cancer progression. We found previously that, in prostate cancer cells, IGF-IR is up-regulated by both androgens and estrogens via a nongenotropic pathway. We now show that, in prostate cancer cells, stimulation with either androgens or estrogens up-regulates IGF-IR by inducing cyclic AMP response element-binding protein (CREB) activation. Both sex steroids phosphorylated CREB at Ser(133) in a dose-dependent manner in androgen receptor (AR)-positive LNCaP cells, whereas only estrogens phosphorylated CREB in AR-negative PC3 cells. CREB phosphorylation involved c-Src-dependent extracellular signal-regulated kinase 1/2 activation, but not protein kinase A, protein kinase C, or calmodulin-dependent kinase II, and occurred also in cells transfected with AR or estrogen receptor mutants that do not localize into the nucleus. CREB silencing abrogated IGF-IR up-regulation and promoter activation. We also showed that CREB binds to IGF-IR promoter region and identified the relevant CREB-binding site at the 5'-untranslated region fragment of IGF-IR promoter. In conclusion, we describe a novel mechanism of IGF-IR up-regulation and promoter activity by CREB activation, induced by sex steroids, through a nongenotropic signaling.

Role of cyclic AMP response element-binding protein in insulin-like growth factor-I receptor up-regulation by sex steroids in prostate cancer cells

CASTORIA, Gabriella;
2009

Abstract

Insulin-like growth factor-I receptor (IGF-IR) overexpression may play a role in prostate cancer progression. We found previously that, in prostate cancer cells, IGF-IR is up-regulated by both androgens and estrogens via a nongenotropic pathway. We now show that, in prostate cancer cells, stimulation with either androgens or estrogens up-regulates IGF-IR by inducing cyclic AMP response element-binding protein (CREB) activation. Both sex steroids phosphorylated CREB at Ser(133) in a dose-dependent manner in androgen receptor (AR)-positive LNCaP cells, whereas only estrogens phosphorylated CREB in AR-negative PC3 cells. CREB phosphorylation involved c-Src-dependent extracellular signal-regulated kinase 1/2 activation, but not protein kinase A, protein kinase C, or calmodulin-dependent kinase II, and occurred also in cells transfected with AR or estrogen receptor mutants that do not localize into the nucleus. CREB silencing abrogated IGF-IR up-regulation and promoter activation. We also showed that CREB binds to IGF-IR promoter region and identified the relevant CREB-binding site at the 5'-untranslated region fragment of IGF-IR promoter. In conclusion, we describe a novel mechanism of IGF-IR up-regulation and promoter activity by CREB activation, induced by sex steroids, through a nongenotropic signaling.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/195185
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 37
social impact