The Cyanidiales is a group of asexual, unicellular red algae, which thrive in acidic and high temperature conditions around hot springs. These unicellular taxa have a relatively simple morphology and are currently classified into three genera, Cyanidium, Cyanidioschyzon and Galdieria. Little is known, however, about the biodiversity of Cyanidiales, their population structure and their phylogenetic relationships. Here we used a taxonomically broadly sampled three-gene data set of plastid sequences to infer a robust phylogenetic framework for the Cyanidiales. The phylogenetic analyses support the existence of at least four distinct Cyanidiales lineage: the Galdieria spp. lineage (excluding Galdieria maxima), the Cyanidium caldarium lineage, a novel monophyletic lineage of mesophilic Cyanidium spp. and the Cyanidioschyzon merolae plus Galdieria maxima lineage. Our analyses do not support the notion of a mesophilic ancestry of the Cyanidiales and suggest that these algae were ancestrally thermo-acidotolerant. We also used environmental polymerase chain reaction (PCR) for the rbcL gene to sample Cyanidiales biodiversity at five ecologically distinct sites at Pisciarelli in the Phlegrean Fields in Italy. This analysis showed a high level of sequence divergence among Cyanidiales species and the partitioning of taxa based on environmental conditions. Our research revealed an unexpected level of genetic diversity among Cyanidiales that revises current thinking about the phylogeny and biodiversity of this group. We predict that future environmental PCR studies will significantly augment known biodiversity that we have discovered and demonstrate the Cyanidiales to be a species-rich branch of red algal evolution.

Hidden biodiversity of the extremophilic Cyanidiales red algae

Ciniglia C;
2004

Abstract

The Cyanidiales is a group of asexual, unicellular red algae, which thrive in acidic and high temperature conditions around hot springs. These unicellular taxa have a relatively simple morphology and are currently classified into three genera, Cyanidium, Cyanidioschyzon and Galdieria. Little is known, however, about the biodiversity of Cyanidiales, their population structure and their phylogenetic relationships. Here we used a taxonomically broadly sampled three-gene data set of plastid sequences to infer a robust phylogenetic framework for the Cyanidiales. The phylogenetic analyses support the existence of at least four distinct Cyanidiales lineage: the Galdieria spp. lineage (excluding Galdieria maxima), the Cyanidium caldarium lineage, a novel monophyletic lineage of mesophilic Cyanidium spp. and the Cyanidioschyzon merolae plus Galdieria maxima lineage. Our analyses do not support the notion of a mesophilic ancestry of the Cyanidiales and suggest that these algae were ancestrally thermo-acidotolerant. We also used environmental polymerase chain reaction (PCR) for the rbcL gene to sample Cyanidiales biodiversity at five ecologically distinct sites at Pisciarelli in the Phlegrean Fields in Italy. This analysis showed a high level of sequence divergence among Cyanidiales species and the partitioning of taxa based on environmental conditions. Our research revealed an unexpected level of genetic diversity among Cyanidiales that revises current thinking about the phylogeny and biodiversity of this group. We predict that future environmental PCR studies will significantly augment known biodiversity that we have discovered and demonstrate the Cyanidiales to be a species-rich branch of red algal evolution.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/195168
Citazioni
  • ???jsp.display-item.citation.pmc??? 41
  • Scopus 127
  • ???jsp.display-item.citation.isi??? 124
social impact