In this study we derive linear models describing the dynamics of the n = 0 plasma displacements around the main ITER equilibrium configurations. The models derived are consistent with the MHD equilibrium constraint as well as with the 3D geometry of the vacuum vessel and blanket outer triangular support where the main eddy currents flow takes place. Particular emphasis is placed on the analysis of the stability margin, growth time and minimum stabilization voltage. The performances of the present ITER control system (single loop) are compared to those of an upgraded system (double-loop) that is here proposed to improve the stability domain of the ITER plasmas forecast.

Vertical stability of ITER plasmas with 3D passive structures and a double-loop control system

MATTEI, Massimiliano;
2005

Abstract

In this study we derive linear models describing the dynamics of the n = 0 plasma displacements around the main ITER equilibrium configurations. The models derived are consistent with the MHD equilibrium constraint as well as with the 3D geometry of the vacuum vessel and blanket outer triangular support where the main eddy currents flow takes place. Particular emphasis is placed on the analysis of the stability margin, growth time and minimum stabilization voltage. The performances of the present ITER control system (single loop) are compared to those of an upgraded system (double-loop) that is here proposed to improve the stability domain of the ITER plasmas forecast.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/194875
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact