We examined the effect of a single injection of 3,5-di-iodo-L-thyronine (3,5-T2) (150 microg/100 g body weight) on the rat liver mitochondrial energy-transduction apparatus. We applied 'top-down' elasticity analysis, which allows identification of the site of action of an effector within a metabolic pathway. This kinetic approach considers oxidative phosphorylation as two blocks of reactions: those generating the mitochondrial inner-membrane potential (DeltaPsi; 'substrate oxidation') and those 'consuming' it ('proton leak' and 'phosphorylating system'). The results show that 1 h after the injection of 3,5-T2, state 4 (respiratory state in which there is no ATP synthesis and the exogenous ADP added has been exhausted) and state 3 (respiratory state in which ATP synthesis is at maximal rate) of mitochondrial respiration were significantly increased (by approx. 30%). 'Top-down' elasticity analysis revealed that these increases were due to the stimulation of reactions involved in substrate oxidation; neither 'proton leak' nor the 'phosphorylating system' was influenced by 3,5-T2. Using the same approach we divided the respiratory chain into two blocks of reactions: cytochrome c reducers and cytochrome c oxidizers. We found that both cytochrome c reducers and cytochrome c oxidizers are targets for 3,5-T2. The rapidity with which 3,5-T2 acts in stimulating the mitochondrial respiration rate suggests to us that di-iodo-L-thyronine may play an important role in the physiological conditions in which rapid energy utilization is required, such as cold exposure or overfeeding.

Effect of 3,5-diiodo-L-thyronine on the mitochondrial energy trasduction apparatus

LANNI, Antonia;
1998

Abstract

We examined the effect of a single injection of 3,5-di-iodo-L-thyronine (3,5-T2) (150 microg/100 g body weight) on the rat liver mitochondrial energy-transduction apparatus. We applied 'top-down' elasticity analysis, which allows identification of the site of action of an effector within a metabolic pathway. This kinetic approach considers oxidative phosphorylation as two blocks of reactions: those generating the mitochondrial inner-membrane potential (DeltaPsi; 'substrate oxidation') and those 'consuming' it ('proton leak' and 'phosphorylating system'). The results show that 1 h after the injection of 3,5-T2, state 4 (respiratory state in which there is no ATP synthesis and the exogenous ADP added has been exhausted) and state 3 (respiratory state in which ATP synthesis is at maximal rate) of mitochondrial respiration were significantly increased (by approx. 30%). 'Top-down' elasticity analysis revealed that these increases were due to the stimulation of reactions involved in substrate oxidation; neither 'proton leak' nor the 'phosphorylating system' was influenced by 3,5-T2. Using the same approach we divided the respiratory chain into two blocks of reactions: cytochrome c reducers and cytochrome c oxidizers. We found that both cytochrome c reducers and cytochrome c oxidizers are targets for 3,5-T2. The rapidity with which 3,5-T2 acts in stimulating the mitochondrial respiration rate suggests to us that di-iodo-L-thyronine may play an important role in the physiological conditions in which rapid energy utilization is required, such as cold exposure or overfeeding.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/194423
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact