Based on quantitative analysis of red cell membrane proteins, hereditary spherocytosis (HS) can be divided into two main groups including isolated or ankyrin combined spectrin deficiency and band 3 reduction. Protein methyl esterification catalysed by protein carboxyl methyltransferase (PCMT type II; EC 2.1.1.77) is a post-biosynthetic modification which is involved in the metabolism of damaged membrane proteins, We utilized the evaluation of erythrocyte membrane protein methyl esterification as a marker of cytoskeletal disarray in seven HS subjects with spectrin reduction and in seven patients with HS due to 3 deficiency. Our results support the notion that 3 deficient erythrocytes are not affected by an extensive cytoskeletal derangement. On the contrary, we found a remarkable increase of membrane methylation in the unsplenectomized, spectrin-deficient, HS patients, suggesting a striking membrane skeleton disarray, This phenomenon was not observed in the spectrin-deficient red cells of splenectomized patients, Therefore in spectrin deficient erythrocytes the induction of cytoskeletal damage, specifically recognized by PCMT type II, could be one of the splenic steps producing conditioned spherocytes.

Cytoskeletal behaviour in spectrin and in band 3 deficient spherocytic red cells: Evidence for a differentiated splenic conditioning role

INGROSSO, Diego;PERROTTA, Silverio;PERNA, Alessandra;MIRAGLIA DEL GIUDICE, Emanuele
1996

Abstract

Based on quantitative analysis of red cell membrane proteins, hereditary spherocytosis (HS) can be divided into two main groups including isolated or ankyrin combined spectrin deficiency and band 3 reduction. Protein methyl esterification catalysed by protein carboxyl methyltransferase (PCMT type II; EC 2.1.1.77) is a post-biosynthetic modification which is involved in the metabolism of damaged membrane proteins, We utilized the evaluation of erythrocyte membrane protein methyl esterification as a marker of cytoskeletal disarray in seven HS subjects with spectrin reduction and in seven patients with HS due to 3 deficiency. Our results support the notion that 3 deficient erythrocytes are not affected by an extensive cytoskeletal derangement. On the contrary, we found a remarkable increase of membrane methylation in the unsplenectomized, spectrin-deficient, HS patients, suggesting a striking membrane skeleton disarray, This phenomenon was not observed in the spectrin-deficient red cells of splenectomized patients, Therefore in spectrin deficient erythrocytes the induction of cytoskeletal damage, specifically recognized by PCMT type II, could be one of the splenic steps producing conditioned spherocytes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/193507
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 20
social impact