We deal in this Note with linear parabolic (in sense of Petrovskij) systems of order 2b with discontinuous principal coefficients belonging to VMO ∩ L ∞. By means of a priori estimates in Sobolev-Morrey spaces we give a precise characterization of the Morrey, BMO and Hölder regularity of the solutions and their derivatives up to order 2b - 1.
Titolo: | Characterization of the interior regularity for parabolic systems with discontinuous coefficients | |
Autori: | ||
Data di pubblicazione: | 2005 | |
Rivista: | ||
Abstract: | We deal in this Note with linear parabolic (in sense of Petrovskij) systems of order 2b with discontinuous principal coefficients belonging to VMO ∩ L ∞. By means of a priori estimates in Sobolev-Morrey spaces we give a precise characterization of the Morrey, BMO and Hölder regularity of the solutions and their derivatives up to order 2b - 1. | |
Handle: | http://hdl.handle.net/11591/190220 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.