To harvest bone for autologous grafting is a daily problem encountered by craniofacial and oral surgeons. Stem cells derived from human dental pulp are able to differentiate in osteoblasts and are a potential source of autologous bone produced in vitro. The authors describe their preliminary results in this new field with its potential application in craniomaxillofacial surgery. Dental pulp was gently extracted from 34 human permanent teeth (all third molars) of patients 19 to 37 years of age. After they were digested, the cells were selected using a cytometer for c-kit, STRO-1, CD34, CD45, and then for CD44 and RUNX-2. This study, made on a considerable number of cases, provided evidence that dental pulp is extremely rich in stem cells, which were c-kit+/CD34+/STRO-1+/ CD45j, capable of differentiation toward several stromal-derived differentiated cells and mainly osteoblasts. These findings, supported by the large number of cases, are of great interest for tissue regeneration, tissue-based clinical therapies, and transplantation.
In vitro bone production using stem cells derived from human dental pulp
LAINO, Gregorio;DE ROSA, Alfredo;GUIDA, Luigi;RULLO, Rosario;MENDITTI, Dardo;PAPACCIO, Gianpaolo
2006
Abstract
To harvest bone for autologous grafting is a daily problem encountered by craniofacial and oral surgeons. Stem cells derived from human dental pulp are able to differentiate in osteoblasts and are a potential source of autologous bone produced in vitro. The authors describe their preliminary results in this new field with its potential application in craniomaxillofacial surgery. Dental pulp was gently extracted from 34 human permanent teeth (all third molars) of patients 19 to 37 years of age. After they were digested, the cells were selected using a cytometer for c-kit, STRO-1, CD34, CD45, and then for CD44 and RUNX-2. This study, made on a considerable number of cases, provided evidence that dental pulp is extremely rich in stem cells, which were c-kit+/CD34+/STRO-1+/ CD45j, capable of differentiation toward several stromal-derived differentiated cells and mainly osteoblasts. These findings, supported by the large number of cases, are of great interest for tissue regeneration, tissue-based clinical therapies, and transplantation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.