Myofibroblasts (MFs) are contractile cells deriving from a multiplicity of resident cells and/or circulating progenitors that are known to play a key role in wound healing. They were first discovered and analysed in the early 1970s in granulation tissue. Since their first identification, the role of MF and their mechanisms of differentiation have been highlighted in a number of diseases, including organ fibrosis and tumours, with particular attention devoted to the liver, kidney, and pulmonary fibrosis. The aim of this review is to summarize the current evidence for the role played by MFs in two frequent vascular diseases related to the remodelling of the vascular wall: the different forms of arterial restenosis and the most common forms of thoracic aortic aneurysm. The in-depth knowledge of the molecular pathways involved in MF differentiation, contraction, and survival/apoptosis could contribute to the identification of novel therapeutic strategies for anti-fibrotic and anti-remodelling therapy of vascular diseases in which these cells are involved.
Role of myofibroblasts in vascular remodelling: focus on restenosis and aneurysm.
DELLA CORTE, Alessandro;DE FEO, Marisa;CIPOLLARO, Marilena
2010
Abstract
Myofibroblasts (MFs) are contractile cells deriving from a multiplicity of resident cells and/or circulating progenitors that are known to play a key role in wound healing. They were first discovered and analysed in the early 1970s in granulation tissue. Since their first identification, the role of MF and their mechanisms of differentiation have been highlighted in a number of diseases, including organ fibrosis and tumours, with particular attention devoted to the liver, kidney, and pulmonary fibrosis. The aim of this review is to summarize the current evidence for the role played by MFs in two frequent vascular diseases related to the remodelling of the vascular wall: the different forms of arterial restenosis and the most common forms of thoracic aortic aneurysm. The in-depth knowledge of the molecular pathways involved in MF differentiation, contraction, and survival/apoptosis could contribute to the identification of novel therapeutic strategies for anti-fibrotic and anti-remodelling therapy of vascular diseases in which these cells are involved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.