BACKGROUND: The aim of this study was to define the range of left ventricular (LV) velocities and deformation indexes in highly trained athletes, analyzing potential differences induced by different long-term training protocols. METHODS: Standard echocardiography, pulsed-wave tissue Doppler echocardiography, and two-dimensional strain echocardiography of the interventricular septum and lateral wall were performed in 370 endurance athletes and 280 power athletes. Using pulsed-wave tissue Doppler, the following parameters of myocardial function were assessed: systolic peak velocities (S(m)), early (E(m)) and late (A(m)) diastolic velocities, and the E(m)/A(m) ratio. By two-dimensional strain echocardiography, peaks of regional systolic strain and LV global longitudinal strain were calculated. RESULTS: LV mass index and ejection fraction did not significantly differ between the two groups. However, power athletes showed an increased sum of wall thicknesses (P < .01) and relative wall thickness, while LV stroke volume and LV end-diastolic diameter (P < .001) were greater in endurance athletes. By pulsed-wave tissue Doppler analysis, E(m) and E(m)/A(m) at both the septal and lateral wall levels were higher in endurance athletes. By two-dimensional strain echocardiography, myocardial deformation indexes were comparable between the two groups. E(m)/A(m) ratios ≥ 1 were found in the overall population, while 90 % of athletes had an E(m) ≥ 16 cm/sec, S(m) ≥ 10 cm/sec, and global longitudinal strain ≤ -16%. Multivariate analyses evidenced independent positive association between Em peak velocity and LV end-diastolic volume (P < .001) and an independent correlation of global longitudinal strain with the sum of LV wall thicknesses (P < .005). CONCLUSIONS: This study describes the full spectrum of systolic and diastolic myocardial velocities and deformation indexes in a large population of competitive athletes.

Left ventricular myocardial velocities and deformation indexes in top-level athletes.

LIMONGELLI, Giuseppe;RUSSO, Maria Giovanna;CALABRO', Raffaele
2010

Abstract

BACKGROUND: The aim of this study was to define the range of left ventricular (LV) velocities and deformation indexes in highly trained athletes, analyzing potential differences induced by different long-term training protocols. METHODS: Standard echocardiography, pulsed-wave tissue Doppler echocardiography, and two-dimensional strain echocardiography of the interventricular septum and lateral wall were performed in 370 endurance athletes and 280 power athletes. Using pulsed-wave tissue Doppler, the following parameters of myocardial function were assessed: systolic peak velocities (S(m)), early (E(m)) and late (A(m)) diastolic velocities, and the E(m)/A(m) ratio. By two-dimensional strain echocardiography, peaks of regional systolic strain and LV global longitudinal strain were calculated. RESULTS: LV mass index and ejection fraction did not significantly differ between the two groups. However, power athletes showed an increased sum of wall thicknesses (P < .01) and relative wall thickness, while LV stroke volume and LV end-diastolic diameter (P < .001) were greater in endurance athletes. By pulsed-wave tissue Doppler analysis, E(m) and E(m)/A(m) at both the septal and lateral wall levels were higher in endurance athletes. By two-dimensional strain echocardiography, myocardial deformation indexes were comparable between the two groups. E(m)/A(m) ratios ≥ 1 were found in the overall population, while 90 % of athletes had an E(m) ≥ 16 cm/sec, S(m) ≥ 10 cm/sec, and global longitudinal strain ≤ -16%. Multivariate analyses evidenced independent positive association between Em peak velocity and LV end-diastolic volume (P < .001) and an independent correlation of global longitudinal strain with the sum of LV wall thicknesses (P < .005). CONCLUSIONS: This study describes the full spectrum of systolic and diastolic myocardial velocities and deformation indexes in a large population of competitive athletes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11591/189040
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 63
social impact