The DNA-binding protein CTCF (CCCTC binding factor) mediates enhancer blocking insulation at sites throughout the genome and plays an important role in regulating allele-specific expression at the Igf2/H19 locus and at other imprinted loci. Evidence is also accumulating that CTCF is involved in large scale organization of genomic chromatin. Although CTCF has 11 zinc fingers, we show here that only 4 of these are essential to strong binding and that they recognize a core 12-bp DNA sequence common to most CTCF sites. By deleting individual fingers and mutating individual sites, we determined the orientation of binding. Furthermore, we were able to identify the specific finger and its point ofDNAinteraction that are responsible for the loss of CTCF binding when CpG residues are methylated in the imprinted Igf2/H19 locus. This single interaction appears to be critical for allele-specific binding and insulation by CTCF.

The DNA-binding protein CTCF (CCCTC binding factor) mediates enhancer blocking insulation at sites throughout the genome and plays an important role in regulating allele-specific expression at the Igf2/H19 locus and at other imprinted loci. Evidence is also accumulating that CTCF is involved in large scale organization of genomic chromatin. Although CTCF has 11 zinc fingers, we show here that only 4 of these are essential to strong binding and that they recognize a core 12-bp DNA sequence common to most CTCF sites. By deleting individual fingers and mutating individual sites, we determined the orientation of binding. Furthermore, we were able to identify the specific finger and its point of DNA interaction that are responsible for the loss of CTCF binding when CpG residues are methylated in the imprinted Igf2/H19 locus. This single interaction appears to be critical for allele-specific binding and insulation by CTCF.

Critical DNA binding interactions of the insulator protein CTCF - A small number of zinc fingers mediate strong binding, and a single finger-DNA interaction controls binding at imprinted loci

BAGLIVO I.;ESPOSITO, Sabrina;FATTORUSSO, Roberto;PEDONE, Paolo Vincenzo
2007

Abstract

The DNA-binding protein CTCF (CCCTC binding factor) mediates enhancer blocking insulation at sites throughout the genome and plays an important role in regulating allele-specific expression at the Igf2/H19 locus and at other imprinted loci. Evidence is also accumulating that CTCF is involved in large scale organization of genomic chromatin. Although CTCF has 11 zinc fingers, we show here that only 4 of these are essential to strong binding and that they recognize a core 12-bp DNA sequence common to most CTCF sites. By deleting individual fingers and mutating individual sites, we determined the orientation of binding. Furthermore, we were able to identify the specific finger and its point of DNA interaction that are responsible for the loss of CTCF binding when CpG residues are methylated in the imprinted Igf2/H19 locus. This single interaction appears to be critical for allele-specific binding and insulation by CTCF.
2007
The DNA-binding protein CTCF (CCCTC binding factor) mediates enhancer blocking insulation at sites throughout the genome and plays an important role in regulating allele-specific expression at the Igf2/H19 locus and at other imprinted loci. Evidence is also accumulating that CTCF is involved in large scale organization of genomic chromatin. Although CTCF has 11 zinc fingers, we show here that only 4 of these are essential to strong binding and that they recognize a core 12-bp DNA sequence common to most CTCF sites. By deleting individual fingers and mutating individual sites, we determined the orientation of binding. Furthermore, we were able to identify the specific finger and its point ofDNAinteraction that are responsible for the loss of CTCF binding when CpG residues are methylated in the imprinted Igf2/H19 locus. This single interaction appears to be critical for allele-specific binding and insulation by CTCF.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/188591
Citazioni
  • ???jsp.display-item.citation.pmc??? 91
  • Scopus 126
  • ???jsp.display-item.citation.isi??? 123
social impact