The RNase H domain of human hepatitis B virus (HBV) polymerase is an attractive molecular target for the development of new anti-HBV drugs. In this study, a synthetic gene coding for HBV RNase H was assembled from 12 oligonucleotides and expressed in Escherichia coli. The encoded protein was then recovered from inclusion bodies, purified, and refolded by a dilution-dialysis procedure in the presence of a low concentration of lauroylsarcosine (0.01%). The presence of the detergent was an absolute requirement for solubility, suggesting that the untagged RNase H might have exposed hydrophobic regions that need to be shielded from the solvent. The structural identity of the protein was confirmed by N-terminal amino acid sequence analysis and mass spectrometry. The enzymatic activity of HBV RNase H was then tested by a recently developed fluorometric assay and was found to be only slightly lower than that registered with the entire HIV-1 reverse transcriptase. Finally, a structural model of the enzyme showed that H715, R744 and K745 may be involved in substrate recognition. © 2007 Elsevier Inc. All rights reserved.

Optimized expression from a synthetic gene of an untagged RNase H domain of human hepatitis B virus polymerase which is enzymatically active

POTENZA, Nicoletta;RUSSO, Aniello
2007

Abstract

The RNase H domain of human hepatitis B virus (HBV) polymerase is an attractive molecular target for the development of new anti-HBV drugs. In this study, a synthetic gene coding for HBV RNase H was assembled from 12 oligonucleotides and expressed in Escherichia coli. The encoded protein was then recovered from inclusion bodies, purified, and refolded by a dilution-dialysis procedure in the presence of a low concentration of lauroylsarcosine (0.01%). The presence of the detergent was an absolute requirement for solubility, suggesting that the untagged RNase H might have exposed hydrophobic regions that need to be shielded from the solvent. The structural identity of the protein was confirmed by N-terminal amino acid sequence analysis and mass spectrometry. The enzymatic activity of HBV RNase H was then tested by a recently developed fluorometric assay and was found to be only slightly lower than that registered with the entire HIV-1 reverse transcriptase. Finally, a structural model of the enzyme showed that H715, R744 and K745 may be involved in substrate recognition. © 2007 Elsevier Inc. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/188327
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact