Actinide isotopes are present in environmental samples at ultra-trace levels (236U concentration is quoted to be on the order of pg/kg or fg/kg). Their detection requires the resolution of mass spectrometry (MS) techniques, but only accelerator mass spectrometry (AMS) has the sensitivity required. In order to perform the isotopic ratio measurements of actinides, such as 236U/238U, an upgrade of the Center for Isotopic Research on Cultural and Environmental Heritage accelerator (CIRCE) in Caserta, Italy, has been performed. The system was originally equipped for radiocarbon AMS measurements. The main difficulty of AMS measurement of 236U is the intense neighboring beam of 238U. Although most of the 238U ions are suppressed by means of magnetic and electrostatic elements, a small fraction of this intense beam can interfere with the rare isotopes. This paper reports the preliminary results of the 236U/238U isotopic ratio measurement limit (<5.6 × 1011), aimed also to better understand the origin of background ions. For this purpose, a large 16-strip silicon detector providing spatial resolution has been used. In addition, calculations to assess the performance of the system obtained by adding a high-resolution time of flight-energy (TOF-E) detector are discussed.

Optimization of 236U AMS at CIRCE

SABBARESE, Carlo;D'ONOFRIO, Antonio;GIALANELLA, Lucio;TERRASI, Filippo
2010

Abstract

Actinide isotopes are present in environmental samples at ultra-trace levels (236U concentration is quoted to be on the order of pg/kg or fg/kg). Their detection requires the resolution of mass spectrometry (MS) techniques, but only accelerator mass spectrometry (AMS) has the sensitivity required. In order to perform the isotopic ratio measurements of actinides, such as 236U/238U, an upgrade of the Center for Isotopic Research on Cultural and Environmental Heritage accelerator (CIRCE) in Caserta, Italy, has been performed. The system was originally equipped for radiocarbon AMS measurements. The main difficulty of AMS measurement of 236U is the intense neighboring beam of 238U. Although most of the 238U ions are suppressed by means of magnetic and electrostatic elements, a small fraction of this intense beam can interfere with the rare isotopes. This paper reports the preliminary results of the 236U/238U isotopic ratio measurement limit (<5.6 × 1011), aimed also to better understand the origin of background ions. For this purpose, a large 16-strip silicon detector providing spatial resolution has been used. In addition, calculations to assess the performance of the system obtained by adding a high-resolution time of flight-energy (TOF-E) detector are discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/188205
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 20
social impact