Stromal stem cells from human dental pulp (SBP-DPSCs) were used to study osteogenic differentiation in vitro and in vivo. We previously reported that SBP-DPSCs are multipotent stem cells able to differen-tiate into osteoblasts, which synthesize threedimensional woven bone tissue chips in vitro. In this study, we followed the temporal expression pattern of specific markers in SBP-DPSCs and found that, when differentiating into osteoblasts, they express, besides osteocalcin, also flk-1 (VEGF-R2). In addition, 30% of them expressed specific antigens for endothelial cells, including CD54, von-Willebrand (domain 1 and 2), CD31 (PECAM-1) and angiotensin-converting enzyme. Interestingly, we found endotheliocytes forming vessel walls, observing that stem cells synergically differentiate into osteoblasts and endotheliocytes, and that flk-1 exerts a pivotal role in coupling osteoblast and endotheliocyte differentiation. When either SBP-DPSCs or bone chips obtained in vitro were transplanted into immunocompromised rats, they generated a tissue structure with an integral blood supply similar to that of human adult bone; in fact, a large number of HLA-1þ vessels were observed either within the bone or surrounding it in a periosteal layer. This study provides direct evidence to suggest that osteogenesis and angiogenesis mediated by human SBP-DPSCs may be regulated by distinct mechanisms, leading to the organization of adult bone tissue after stem cell transplantion.

Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation.

LAINO, Gregorio;DE ROSA, Alfredo;PAPACCIO, Gianpaolo
2007

Abstract

Stromal stem cells from human dental pulp (SBP-DPSCs) were used to study osteogenic differentiation in vitro and in vivo. We previously reported that SBP-DPSCs are multipotent stem cells able to differen-tiate into osteoblasts, which synthesize threedimensional woven bone tissue chips in vitro. In this study, we followed the temporal expression pattern of specific markers in SBP-DPSCs and found that, when differentiating into osteoblasts, they express, besides osteocalcin, also flk-1 (VEGF-R2). In addition, 30% of them expressed specific antigens for endothelial cells, including CD54, von-Willebrand (domain 1 and 2), CD31 (PECAM-1) and angiotensin-converting enzyme. Interestingly, we found endotheliocytes forming vessel walls, observing that stem cells synergically differentiate into osteoblasts and endotheliocytes, and that flk-1 exerts a pivotal role in coupling osteoblast and endotheliocyte differentiation. When either SBP-DPSCs or bone chips obtained in vitro were transplanted into immunocompromised rats, they generated a tissue structure with an integral blood supply similar to that of human adult bone; in fact, a large number of HLA-1þ vessels were observed either within the bone or surrounding it in a periosteal layer. This study provides direct evidence to suggest that osteogenesis and angiogenesis mediated by human SBP-DPSCs may be regulated by distinct mechanisms, leading to the organization of adult bone tissue after stem cell transplantion.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/187775
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 418
  • ???jsp.display-item.citation.isi??? 386
social impact