Human herpesviruses enter cells by fusion of their own membrane with a cellular membrane through the concerted action of multiple viral proteins and cellular receptors. Two conserved viral glycoproteins, gB and gH, are required for herpes simplex virus type 1 (HSV-1)-mediated membrane fusion, but little is known of how these proteins cooperate during entry. Both glycoproteins were shown to contain heptad repeat (HR) sequences predicted to form a-helical coiled coils, and the inhibitory activity against infection of four sets of synthetic peptides corresponding to HR1 and HR2 of gB and gH was tested. The interactions between these HR peptides were also investigated by circular dichroism, native polyacrylamide-gel electrophoresis and size exclusion high-performance liquid chromatography. gH coiled-coil peptides were more effective than gB coiled-coils peptides in inhibiting virus infectivity. The peptides did not impair fusion when added to cells immediately after infection. In contrast, inhibition of infection was observed, albeit to various extents, when peptides were added to virus before or during inoculation. The results of biophysical analyses were indicative of the existence of an interaction between HR1 and HR2 of gH and suggest that the HRs of gB and gH do not interact with each other.

Analysis of synthetic peptides from heptad-repeat domains of herpes simplex virus type 1 glycoproteins H and B.

GALDIERO, Massimiliano
2006

Abstract

Human herpesviruses enter cells by fusion of their own membrane with a cellular membrane through the concerted action of multiple viral proteins and cellular receptors. Two conserved viral glycoproteins, gB and gH, are required for herpes simplex virus type 1 (HSV-1)-mediated membrane fusion, but little is known of how these proteins cooperate during entry. Both glycoproteins were shown to contain heptad repeat (HR) sequences predicted to form a-helical coiled coils, and the inhibitory activity against infection of four sets of synthetic peptides corresponding to HR1 and HR2 of gB and gH was tested. The interactions between these HR peptides were also investigated by circular dichroism, native polyacrylamide-gel electrophoresis and size exclusion high-performance liquid chromatography. gH coiled-coil peptides were more effective than gB coiled-coils peptides in inhibiting virus infectivity. The peptides did not impair fusion when added to cells immediately after infection. In contrast, inhibition of infection was observed, albeit to various extents, when peptides were added to virus before or during inoculation. The results of biophysical analyses were indicative of the existence of an interaction between HR1 and HR2 of gH and suggest that the HRs of gB and gH do not interact with each other.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/187690
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 57
social impact