Stem cells were obtained from deciduous dental pulp of healthy subjects, aged 6-10 years. This stem cell population was cultured, expanded, and specifically selected, detecting using a FACsorter, c-kit, CD34, and STRO-1 antigen expression. Then, c-kit+/ CD34+/STRO-1+cells were replaced in the culture medium added of 20% FBS, leading to osteoblast differentiation. In fact, these cells, after a week, showed a large positivity for CD44, osteocalcin, and RUNX-2 markers. To achieve an adipocytic differentiation, cells, after sorting, were challenged with dexamethason 10-8mM in the same culture medium. To obtain myotube fusion, sorted cells were co-cultured in ATCC medium with mouse myogenic C2C12 cells and, after a week, human stem cell nuclei were found to be able to fuse, forming myotubes. Differentiated osteoblasts, as assessed by a large positivity to several specific antibodies, after 30 days of culture and already in vitro, started to secrete an extracellular mineralized matrix, which, 2 weeks later, built a considerable number of 3D woven bone samples, which showed a strong positivity to alkaline phosphatase (ALP), alizarin red, calcein, other than to specific antibodies. These bone samples, after in vivo transplantation into immunosuppressed rats, were remodeled in a lamellar bone containing entrapped osteocytes. Therefore, this study provides strong evidence that human deciduous dental pulp is an approachable "niche" of stromal stem cells, and that it is an ideal source of osteoblasts, as well as of mineralized tissue, ready for bone regeneration, transplantation, and tissue-based clinical therapies. © 2005 Wiley-Liss, Inc.
An approachable human adult stem cell source for hard-tissue engineering
LAINO, Gregorio;DE ROSA, Alfredo;PAPACCIO, Gianpaolo
2006
Abstract
Stem cells were obtained from deciduous dental pulp of healthy subjects, aged 6-10 years. This stem cell population was cultured, expanded, and specifically selected, detecting using a FACsorter, c-kit, CD34, and STRO-1 antigen expression. Then, c-kit+/ CD34+/STRO-1+cells were replaced in the culture medium added of 20% FBS, leading to osteoblast differentiation. In fact, these cells, after a week, showed a large positivity for CD44, osteocalcin, and RUNX-2 markers. To achieve an adipocytic differentiation, cells, after sorting, were challenged with dexamethason 10-8mM in the same culture medium. To obtain myotube fusion, sorted cells were co-cultured in ATCC medium with mouse myogenic C2C12 cells and, after a week, human stem cell nuclei were found to be able to fuse, forming myotubes. Differentiated osteoblasts, as assessed by a large positivity to several specific antibodies, after 30 days of culture and already in vitro, started to secrete an extracellular mineralized matrix, which, 2 weeks later, built a considerable number of 3D woven bone samples, which showed a strong positivity to alkaline phosphatase (ALP), alizarin red, calcein, other than to specific antibodies. These bone samples, after in vivo transplantation into immunosuppressed rats, were remodeled in a lamellar bone containing entrapped osteocytes. Therefore, this study provides strong evidence that human deciduous dental pulp is an approachable "niche" of stromal stem cells, and that it is an ideal source of osteoblasts, as well as of mineralized tissue, ready for bone regeneration, transplantation, and tissue-based clinical therapies. © 2005 Wiley-Liss, Inc.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.