Three Chlamydomonas strains were isolated from the soils of a hot spring located in the Campi Flegrei Caldera (Naples, Italy). Ecophysiological, morpho-cytological and molecular features were used to characterize these isolates and to compare them with chlamydomonax acidophila strains from algal culture collections. The strains were collected from three points of the volcanic site, differing in their physico-chemical conditions. Among the examined Chlamydomonas strains, only the isolates from Campi Flegrei could grow optimally at pH values ≤3.0. These isolates also showed a high tolerance to desiccation and high temperatures, not evidenced by the other Chlamydomonas strains included in the study. 18S rDNA phylogeny indicates that the isolates from Campi Flegrei are closely related to Chlamydomonas pitschmannii and two strains isolated in Canada and Europe, that have been designated as Chlamydomonas acidophila. A Chlamydomonas acidophila strain isolated from the type locality in Japan is less closely related according to its molecular phylogeny, and can also be discerned by light and electron microscopy. Moreover, vegetative cells and sporangia of Chlamydomonas acidophila from Japan showed a median trilaminar structure not observed in the other strains. Our results show that Chlamydomonas pitschmannii could represent a hitherto unknown extremophilic Chlamydomonas species.
Three Chlamydomonas strains were isolated from the soils of a hot spring located in the Campi Flegrei Caldera (Naples, Italy). Ecophysiological, morpho-cytological and molecular features were used to characterize these isolates and to compare them with chlamydomonax acidophila strains from algal culture collections. The strains were collected from three points of the volcanic site, differing in their physico-chemical conditions. Among the examined Chlamydomonas strains, only the isolates from Campi Flegrei could grow optimally at pH values <= 3.0. These isolates also showed a high tolerance to desiccation and high temperatures, not evidenced by the other Chlamydomonas strains included in the study. 18S rDNA phylogeny indicates that the isolates from Campi Flegrei are closely related to Chlamydomonas pitschmannii and two strains isolated in Canada and Europe, that have been designated as Chlamydomonas acidophila. A Chlamydomonas acidophila strain isolated from the type locality in Japan is less closely related according to its molecular phylogeny, and can also be discerned by light and electron microscopy. Moreover, vegetative cells and sporangia of Chlamydomonas acidophila from Japan showed a median trilaminar structure not observed in the other strains. Our results show that Chlamydomonas pitschmannii could represent a hitherto unknown extremophilic Chiamydomonas species. (c) 2005 Elsevier GrnbH. All rights reserved.
Chlamydomonas pitschmannii Ettl, a little known species from thermoacidic environments
Ciniglia C;De Stefano M;
2005
Abstract
Three Chlamydomonas strains were isolated from the soils of a hot spring located in the Campi Flegrei Caldera (Naples, Italy). Ecophysiological, morpho-cytological and molecular features were used to characterize these isolates and to compare them with chlamydomonax acidophila strains from algal culture collections. The strains were collected from three points of the volcanic site, differing in their physico-chemical conditions. Among the examined Chlamydomonas strains, only the isolates from Campi Flegrei could grow optimally at pH values <= 3.0. These isolates also showed a high tolerance to desiccation and high temperatures, not evidenced by the other Chlamydomonas strains included in the study. 18S rDNA phylogeny indicates that the isolates from Campi Flegrei are closely related to Chlamydomonas pitschmannii and two strains isolated in Canada and Europe, that have been designated as Chlamydomonas acidophila. A Chlamydomonas acidophila strain isolated from the type locality in Japan is less closely related according to its molecular phylogeny, and can also be discerned by light and electron microscopy. Moreover, vegetative cells and sporangia of Chlamydomonas acidophila from Japan showed a median trilaminar structure not observed in the other strains. Our results show that Chlamydomonas pitschmannii could represent a hitherto unknown extremophilic Chiamydomonas species. (c) 2005 Elsevier GrnbH. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.