We analyzed whole cell protein content of rat liver following T3 administration. Fourteen differentially expressed proteins were unambiguously identified and were involved in substrates and lipid metabolism, energy metabolism, detoxification of cytotoxic products, calcium homeostasis, amino acid catabolism, and the urea cycle. This study represents the first systematic identification of T3-induced changes in liver protein expression profile and provides novel information at the molecular, cellular, and tissue level of T3 action

We analyzed whole cell protein content of rat liver following T3 administration. Fourteen differentially expressed proteins were unambiguously identified and were involved in substrates and lipid metabolism, energy metabolism, detoxification of cytotoxic products, calcium homeostasis, amino acid catabolism, and the urea cycle. This study represents the first systematic identification of T3-induced changes in liver protein expression profile and provides novel information at the molecular, cellular, and tissue level of T3 action. © 2006 American Chemical Society.

A proteomics approach to identify protein expression changes in rat liver following administration of 3,5,3′-triiodo-L-thyronine

DE LANGE, Pieter;CHAMBERY, Angela;LANNI, Antonia;
2006

Abstract

We analyzed whole cell protein content of rat liver following T3 administration. Fourteen differentially expressed proteins were unambiguously identified and were involved in substrates and lipid metabolism, energy metabolism, detoxification of cytotoxic products, calcium homeostasis, amino acid catabolism, and the urea cycle. This study represents the first systematic identification of T3-induced changes in liver protein expression profile and provides novel information at the molecular, cellular, and tissue level of T3 action. © 2006 American Chemical Society.
2006
We analyzed whole cell protein content of rat liver following T3 administration. Fourteen differentially expressed proteins were unambiguously identified and were involved in substrates and lipid metabolism, energy metabolism, detoxification of cytotoxic products, calcium homeostasis, amino acid catabolism, and the urea cycle. This study represents the first systematic identification of T3-induced changes in liver protein expression profile and provides novel information at the molecular, cellular, and tissue level of T3 action
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/185001
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact