Abstract We observed that sex steroid hormones, like growth factors, stimulate the Src/Ras/erk pathway of cell lines derived from human mammary or prostate cancers. In addition, hormone-dependent pathway activation can be induced in Cos cells, upon transfection of classic steroid receptors. Cross-talks between sex steroid receptors regulate their association with Src and consequent pathway activation. Oestradiol treatment of MCF-7 cells triggers simultaneous association of ER with Src and p85, the regulatory subunit of phosphatidylinositol-3-kinase (PI3-kinase) and activation of Src- and PI3-K-dependent pathways. Activation of the latter pathway triggers cyclin D1 transcription, that is unaffected by Mek-1 activation. This suggests that simultaneous activation of different signalling effectors is required to target different cell cycle components. Thus, a novel reciprocal cross-talk between the two pathways appears to be mediated by the ER. In all tested cells, activation of the signalling pathways has a proliferative role. Transcriptionally inactive ER expressed in NIH 3T3 cells responds to hormone causing Src/Ras/Erk pathway activation and DNA synthesis. This suggests that in these cells genomic activity is required for later events of cell growth.
Sex steroid hormones act as growth factors
MIGLIACCIO, Antimo;CASTORIA, Gabriella;DI DOMENICO, Marina;DE FALCO, Antonietta;BILANCIO, Antonio;
2002
Abstract
Abstract We observed that sex steroid hormones, like growth factors, stimulate the Src/Ras/erk pathway of cell lines derived from human mammary or prostate cancers. In addition, hormone-dependent pathway activation can be induced in Cos cells, upon transfection of classic steroid receptors. Cross-talks between sex steroid receptors regulate their association with Src and consequent pathway activation. Oestradiol treatment of MCF-7 cells triggers simultaneous association of ER with Src and p85, the regulatory subunit of phosphatidylinositol-3-kinase (PI3-kinase) and activation of Src- and PI3-K-dependent pathways. Activation of the latter pathway triggers cyclin D1 transcription, that is unaffected by Mek-1 activation. This suggests that simultaneous activation of different signalling effectors is required to target different cell cycle components. Thus, a novel reciprocal cross-talk between the two pathways appears to be mediated by the ER. In all tested cells, activation of the signalling pathways has a proliferative role. Transcriptionally inactive ER expressed in NIH 3T3 cells responds to hormone causing Src/Ras/Erk pathway activation and DNA synthesis. This suggests that in these cells genomic activity is required for later events of cell growth.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.