Antioxidants are known to exert a preventive activity against degenerative diseases. Here, we investigated the mechanism of action of three antioxidants: resveratrol, which causes differentiation of HL-60 cells, and hydroxytyrosol and pyrrolidine dithiocarbamate which, in the same model system, activate apoptosis. The expression profile of hydroxytyrosol-treated cells showed the up-regulation of several genes, including c-jun and egr1. Pyrrolidine dithiocarbamate activates both genes, while resveratrol increases uniquely egr1. A selective modulation of signalling pathway explained this finding. All antioxidants up-regulate Erk1/2, while only hydroxytyrosol and pyrrolidine dithiocarbamate activate c-Jun N-terminal kinase (JNK). Since JNK induces apoptosis by Bcl-2 phosphorylation, we investigated this event. Bcl-2 phosphorylation was increased by hydroxytyrosol and pyrrolidine dithiocarbamate and not by resveratrol. Our results indicate that the different phenotypical effects of antioxidants correlate with modulation of selective transduction pathways.
Antioxidants induce different phenotypes by a distinct modulation of signal transduction
DELLA RAGIONE, Fulvio;BORRIELLO, Adriana;
2002
Abstract
Antioxidants are known to exert a preventive activity against degenerative diseases. Here, we investigated the mechanism of action of three antioxidants: resveratrol, which causes differentiation of HL-60 cells, and hydroxytyrosol and pyrrolidine dithiocarbamate which, in the same model system, activate apoptosis. The expression profile of hydroxytyrosol-treated cells showed the up-regulation of several genes, including c-jun and egr1. Pyrrolidine dithiocarbamate activates both genes, while resveratrol increases uniquely egr1. A selective modulation of signalling pathway explained this finding. All antioxidants up-regulate Erk1/2, while only hydroxytyrosol and pyrrolidine dithiocarbamate activate c-Jun N-terminal kinase (JNK). Since JNK induces apoptosis by Bcl-2 phosphorylation, we investigated this event. Bcl-2 phosphorylation was increased by hydroxytyrosol and pyrrolidine dithiocarbamate and not by resveratrol. Our results indicate that the different phenotypical effects of antioxidants correlate with modulation of selective transduction pathways.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.