Mesenchymal Stem Cell (MSC) therapy holds promise for treating diseases and tissue repair. Regeneration of skeletal muscle tissue that is lost during pathological muscle degeneration or after injuries is sustained by the production of new myofibers. Human Adipose Stem Cells (ASCs) have been reported to regenerate muscle fibers and reconstitute the pericytic cell pool after myogenic differentiation in vitro. Our aim was to evaluate the differentiation potential of constructs made from a new cross-linked hyaluronic acid (XHA) scaffold on which different sorted subpopulations of ASCs were loaded. 30 days after engraftment in mice, we found that NG2(+) ASCs underwent a complete myogenic differentiation, fabricating a human skeletal muscle tissue, while NG2(-) ASCs merely formed a human adipose tissue. Myogenic differentiation was confirmed by the expression of MyoD, MF20, laminin, and lamin A/C by immunofluorescence and/or RT-PCR. In contrast, adipose differentiation was confirmed by the expression of adiponectin, Glut-4, and PPAR-γ. Both tissues formed expressed Class I HLA, confirming their human origin and excluding any contamination by murine cells. In conclusion, our study provides novel evidence that NG2(+) ASCs loaded on XHA scaffolds are able to fabricate a human skeletal muscle tissue in vivo without the need of a myogenic pre-differentiation step in vitro. We emphasize the translational significance of our findings for human skeletal muscle regeneration. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.

Human Ng2+ adipose stem cells loaded in vivo on a new crosslinked hyaluronic acid-Lys scaffold fabricate a skeletal muscle tissue.

DESIDERIO, Vincenzo;SCHIRALDI, Chiara;DE ROSA, Alfredo;LA GATTA, Annalisa;PAINO, Francesca;FERRARO, Giuseppe;TIRINO, Virginia;PAPACCIO, Gianpaolo
Supervision
2013

Abstract

Mesenchymal Stem Cell (MSC) therapy holds promise for treating diseases and tissue repair. Regeneration of skeletal muscle tissue that is lost during pathological muscle degeneration or after injuries is sustained by the production of new myofibers. Human Adipose Stem Cells (ASCs) have been reported to regenerate muscle fibers and reconstitute the pericytic cell pool after myogenic differentiation in vitro. Our aim was to evaluate the differentiation potential of constructs made from a new cross-linked hyaluronic acid (XHA) scaffold on which different sorted subpopulations of ASCs were loaded. 30 days after engraftment in mice, we found that NG2(+) ASCs underwent a complete myogenic differentiation, fabricating a human skeletal muscle tissue, while NG2(-) ASCs merely formed a human adipose tissue. Myogenic differentiation was confirmed by the expression of MyoD, MF20, laminin, and lamin A/C by immunofluorescence and/or RT-PCR. In contrast, adipose differentiation was confirmed by the expression of adiponectin, Glut-4, and PPAR-γ. Both tissues formed expressed Class I HLA, confirming their human origin and excluding any contamination by murine cells. In conclusion, our study provides novel evidence that NG2(+) ASCs loaded on XHA scaffolds are able to fabricate a human skeletal muscle tissue in vivo without the need of a myogenic pre-differentiation step in vitro. We emphasize the translational significance of our findings for human skeletal muscle regeneration. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/182826
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 53
social impact