Amyotrophic lateral sclerosis (ALS) is a progressive and seriously disabling adult-onset neurological disease. Ninety percent of ALS patients are sporadic cases (sALS) with no clear genetic linkage. Accumulating evidence indicates that various microRNAs (miRNAs), expressed in a spatially and temporally controlled manner in the brain, play a key role in neuronal development. In addition, microRNA dysregulation contributes to some mental disorders and neurodegeneration diseases. In our research, the expression of one selected miRNA, miR-338-3p, which previously we have found over-expressed in blood leukocytes, was studied in several different tissues from sALS patients. For the first time, we detected a specific microRNA disease-related upregulation, miR-338-3p, in blood leukocytes as well in cerebrospinal fluid, serum, and spinal cord from sALS patients. Besides, staining of in situ hybridization showed that the signals of miR-338-3p were localized in the grey matter of spinal cord tissues from sALS autopsied patients. We propose that miRNA profiles found in tissue samples from sALS patients can be relevant to understand sALS pathogenesis and lead to set up effective biomarkers for sALS early diagnosis.

miR-338-3p is over-expressed in blood, CFS, serum and spinal cord from sporadic amyotrophic lateral sclerosis patients

DE FELICE, Bruna;COPPOLA, Cinzia;
2014

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive and seriously disabling adult-onset neurological disease. Ninety percent of ALS patients are sporadic cases (sALS) with no clear genetic linkage. Accumulating evidence indicates that various microRNAs (miRNAs), expressed in a spatially and temporally controlled manner in the brain, play a key role in neuronal development. In addition, microRNA dysregulation contributes to some mental disorders and neurodegeneration diseases. In our research, the expression of one selected miRNA, miR-338-3p, which previously we have found over-expressed in blood leukocytes, was studied in several different tissues from sALS patients. For the first time, we detected a specific microRNA disease-related upregulation, miR-338-3p, in blood leukocytes as well in cerebrospinal fluid, serum, and spinal cord from sALS patients. Besides, staining of in situ hybridization showed that the signals of miR-338-3p were localized in the grey matter of spinal cord tissues from sALS autopsied patients. We propose that miRNA profiles found in tissue samples from sALS patients can be relevant to understand sALS pathogenesis and lead to set up effective biomarkers for sALS early diagnosis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11591/182817
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 73
social impact