Exploitation of embryonic stem cells (ESC) for therapeutic use and biomedical applications is severely hampered by the risk of teratocarcinoma formation. Here, we performed a screen of selected epi-modulating compounds and demonstrate that a transient exposure of mouse ESC to MS-275 (Entinostat), a class I histone deacetylase inhibitor (HDAC), modulates differentiation and prevents teratocarcinoma formation. Morphological and molecular data indicate that MS-275-primed ESCs are committed towards neural differentiation, which is supported by transcriptome analyses. Interestingly, in vitro withdrawal of MS-275 reverses the primed cells to the pluripotent state. In vivo, MS275-primed ES cells injected into recipient mice give only rise to benign teratomas but not teratocarcinomas with prevalence of neural-derived structures. In agreement, MS- 275-primed ESC are unable to colonize blastocysts. These findings provide evidence that a transient alteration of acetylation alters the ESC fate.

The class I-specific HDAC inhibitor MS-275 modulates the differentiation potential of mouse embryonic stem cells

BALDI, Alfonso;ALTUCCI, Lucia
2013

Abstract

Exploitation of embryonic stem cells (ESC) for therapeutic use and biomedical applications is severely hampered by the risk of teratocarcinoma formation. Here, we performed a screen of selected epi-modulating compounds and demonstrate that a transient exposure of mouse ESC to MS-275 (Entinostat), a class I histone deacetylase inhibitor (HDAC), modulates differentiation and prevents teratocarcinoma formation. Morphological and molecular data indicate that MS-275-primed ESCs are committed towards neural differentiation, which is supported by transcriptome analyses. Interestingly, in vitro withdrawal of MS-275 reverses the primed cells to the pluripotent state. In vivo, MS275-primed ES cells injected into recipient mice give only rise to benign teratomas but not teratocarcinomas with prevalence of neural-derived structures. In agreement, MS- 275-primed ESC are unable to colonize blastocysts. These findings provide evidence that a transient alteration of acetylation alters the ESC fate.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/182333
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact