The introduction of cyanide with a backflow attack into a water system was studied. The recent development of techniques for water network sectorization, aimed to improve the management of water systems, represents also an efficient way to protect networks from intentional contamination. The possibility of closing gate valves by a remote control system to create an i-DMA (isolated District Meter Area) can reduce the risk of contamination and thus the extent of damage of a terroristic attack. The study proposes a novel technique for designing i-DMAs compatible with hydraulic performance and optimized for water network protection.
A District Sectorization for Water Network Protection from Intentional Contamination
DI NARDO, Armando;DI NATALE, Michele;MUSMARRA, Dino;Santonastaso, G. F.;
2014
Abstract
The introduction of cyanide with a backflow attack into a water system was studied. The recent development of techniques for water network sectorization, aimed to improve the management of water systems, represents also an efficient way to protect networks from intentional contamination. The possibility of closing gate valves by a remote control system to create an i-DMA (isolated District Meter Area) can reduce the risk of contamination and thus the extent of damage of a terroristic attack. The study proposes a novel technique for designing i-DMAs compatible with hydraulic performance and optimized for water network protection.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.