A new simulation chain for early prediction of rainfallinduced landslides in unsaturated soils is presented. It includes a special computational weather code for forecasting the evolution of the synoptic weather and its changes due to interaction with the Earth’s surface (rainfall pattern), and a hydro-mechanical code to analyse rainfall effects on slope stability by computing degree of saturation and pore pressure changes due to rainwater infiltration. The linkage between these two numerical codes is ensured by an interface with the aim of bringing the data provided by the first code, which operates at basin or slope scale. The simulation chain can work in computational times that may be considered suitable for civil protection operations.
A simulation chain for early prediction of rainfall-induced landslides
OLIVARES, Lucio;DAMIANO, Emilia;PICARELLI, Luciano;
2014
Abstract
A new simulation chain for early prediction of rainfallinduced landslides in unsaturated soils is presented. It includes a special computational weather code for forecasting the evolution of the synoptic weather and its changes due to interaction with the Earth’s surface (rainfall pattern), and a hydro-mechanical code to analyse rainfall effects on slope stability by computing degree of saturation and pore pressure changes due to rainwater infiltration. The linkage between these two numerical codes is ensured by an interface with the aim of bringing the data provided by the first code, which operates at basin or slope scale. The simulation chain can work in computational times that may be considered suitable for civil protection operations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.