The problem of generating optimal flight trajectories in the presence of no-fly zones and/or obstacles is computationally expensive. It is usually solved offline, at least for those parts which cannot satisfy real time constraints. Here we investigate the exploitation of two parallel programming techniques to reduce the lead time. The former employs some parallelization techniques formulti-core and/or multi-processor platforms. The latter is targeted to a distributed fleet of Unmanned Aerial Vehicles. Here the statement of the problem and preliminary development are discussed. A two-dimensional scenario is analysed by way of example to show the applicability and the effectiveness of the approaches.
A Parallel and a Distributed Implementation of the Core Paths Graph Algorithm
VENTICINQUE, Salvatore;AVERSA, Rocco;MATTEI, Massimiliano;BLASI, Luciano
2015
Abstract
The problem of generating optimal flight trajectories in the presence of no-fly zones and/or obstacles is computationally expensive. It is usually solved offline, at least for those parts which cannot satisfy real time constraints. Here we investigate the exploitation of two parallel programming techniques to reduce the lead time. The former employs some parallelization techniques formulti-core and/or multi-processor platforms. The latter is targeted to a distributed fleet of Unmanned Aerial Vehicles. Here the statement of the problem and preliminary development are discussed. A two-dimensional scenario is analysed by way of example to show the applicability and the effectiveness of the approaches.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.