Energy deprivation poses a tremendous challenge to skeletal muscle. Glucose (ATP) depletion causes muscle fibers to undergo rapid adaptive changes toward the use of fatty acids (instead of glucose) as fuel. Physiological situations involving energy deprivation in skeletal muscle include exercise and fasting. A vast body of evidence is available on the signaling pathways that lead to structural/metabolic changes in muscle during exercise and endurance training. In contrast, only recently has a systematic, overall picture been obtained of the signaling processes (and their kinetics and sequential order) that lead to adaptations of the muscle to the fasting state. It has become clear that the reaction of the organism to food restraint or deprivation involves a rapid signaling process causing skeletal muscles, which generally use glucose as their predominant fuel, to switch to the use of fat as fuel. Efficient sensing of glucose depletion in skeletal muscle guarantees maintained activity in those tissues that rely entirely on glucose (such as the brain). To metabolize fatty acids, skeletal muscle needs to activate complex transcription, translation, and phosphorylation pathways. Only recently has it become clear that these pathways are interrelated and tightly regulated in a rapid, transient manner. Food deprivation may trigger these responses with a timing/intensity that differs among animal species and that may depend on their individual ability to induce structural/metabolic changes that serve to safeguard whole-body energy homeostasis in the longer term. The increased cellular AMP/ATP ratio induced by food deprivation, which results in activation of AMP-activated protein kinase (AMPK), initiates a rapid signaling process, resulting in the recruitment of factors mediating the structural/metabolic shift in skeletal muscle toward this change in fuel usage. These factors include peroxisome proliferator-activated receptor (PPAR)γ coactivator-1α (PGC-1α), PPARδ, and their target genes, which are involved in the formation of oxidative muscle fibers, mitochondrial biogenesis, oxidative phosphorylation, and fatty acid oxidation. Fatty acids, besides being the fuel for mitochondrial oxidation, have been identified as important signaling molecules regulating the transcription and/or activity of the genes or gene products involved in fatty acid metabolism during food deprivation. It is thus becoming increasingly clear that fatty acids determine the economy of their own usage. We discuss the order of events from the onset of food deprivation and their importance. © FASEB.

Fuel economy in food-deprived skeletal muscle: signaling pathways and regulatory mechanisms

DE LANGE, Pieter;LANNI, Antonia
2007

Abstract

Energy deprivation poses a tremendous challenge to skeletal muscle. Glucose (ATP) depletion causes muscle fibers to undergo rapid adaptive changes toward the use of fatty acids (instead of glucose) as fuel. Physiological situations involving energy deprivation in skeletal muscle include exercise and fasting. A vast body of evidence is available on the signaling pathways that lead to structural/metabolic changes in muscle during exercise and endurance training. In contrast, only recently has a systematic, overall picture been obtained of the signaling processes (and their kinetics and sequential order) that lead to adaptations of the muscle to the fasting state. It has become clear that the reaction of the organism to food restraint or deprivation involves a rapid signaling process causing skeletal muscles, which generally use glucose as their predominant fuel, to switch to the use of fat as fuel. Efficient sensing of glucose depletion in skeletal muscle guarantees maintained activity in those tissues that rely entirely on glucose (such as the brain). To metabolize fatty acids, skeletal muscle needs to activate complex transcription, translation, and phosphorylation pathways. Only recently has it become clear that these pathways are interrelated and tightly regulated in a rapid, transient manner. Food deprivation may trigger these responses with a timing/intensity that differs among animal species and that may depend on their individual ability to induce structural/metabolic changes that serve to safeguard whole-body energy homeostasis in the longer term. The increased cellular AMP/ATP ratio induced by food deprivation, which results in activation of AMP-activated protein kinase (AMPK), initiates a rapid signaling process, resulting in the recruitment of factors mediating the structural/metabolic shift in skeletal muscle toward this change in fuel usage. These factors include peroxisome proliferator-activated receptor (PPAR)γ coactivator-1α (PGC-1α), PPARδ, and their target genes, which are involved in the formation of oxidative muscle fibers, mitochondrial biogenesis, oxidative phosphorylation, and fatty acid oxidation. Fatty acids, besides being the fuel for mitochondrial oxidation, have been identified as important signaling molecules regulating the transcription and/or activity of the genes or gene products involved in fatty acid metabolism during food deprivation. It is thus becoming increasingly clear that fatty acids determine the economy of their own usage. We discuss the order of events from the onset of food deprivation and their importance. © FASEB.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/166540
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 110
  • ???jsp.display-item.citation.isi??? 103
social impact