We consider a mixed boundary problem for the Navier–Stokes equations in a bounded Lipschitz two-dimensional domain: we assign a Dirichlet condition on the curve portion of the boundary and a slip zero condition on its straight portion. We prove that the problem has a solution provided the boundary datum and the body force belong to a Lebesgue’s space and to the Hardy space respectively.

A mixed problem for the stationary Navier-Stokes equations

STARITA, Giulio
2009

Abstract

We consider a mixed boundary problem for the Navier–Stokes equations in a bounded Lipschitz two-dimensional domain: we assign a Dirichlet condition on the curve portion of the boundary and a slip zero condition on its straight portion. We prove that the problem has a solution provided the boundary datum and the body force belong to a Lebesgue’s space and to the Hardy space respectively.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/166538
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact