Although substantial progresses have been made in building anthropomorphic robotic hands, lack of mechanical robustness, dexterity and force sensation still restrains wide adoption of robotic prostheses. This paper presents the design and preliminary evaluation of the PRISMA hand II, which is a mechanically robust anthropomorphic hand developed at the PRISMA Lab of University of Naples Federico II. The hand is highly underactuated, as the 19 finger joints are driven by three motors via elastic tendons. Nevertheless, the hand can performs not only adaptive grasps but also in-hand manipulation. The hand uses rolling contact joints, which is compliant in multiple directions. Force sensor are integrated to each fingertip in order to provide force feedback during grasping and manipulation. Preliminary experiments have been performed to evaluate the hand. Results show that the hand can perform various grasps and in-hand manipulation, while the structure can withstand severe disarticulation. This suggests that the proposed design can be a viable solution for robust and dexterous prosthetic hands.
The PRISMA Hand II: A Sensorized Robust Hand for Adaptive Grasp and In-Hand Manipulation
Pirozzi S.;
2022
Abstract
Although substantial progresses have been made in building anthropomorphic robotic hands, lack of mechanical robustness, dexterity and force sensation still restrains wide adoption of robotic prostheses. This paper presents the design and preliminary evaluation of the PRISMA hand II, which is a mechanically robust anthropomorphic hand developed at the PRISMA Lab of University of Naples Federico II. The hand is highly underactuated, as the 19 finger joints are driven by three motors via elastic tendons. Nevertheless, the hand can performs not only adaptive grasps but also in-hand manipulation. The hand uses rolling contact joints, which is compliant in multiple directions. Force sensor are integrated to each fingertip in order to provide force feedback during grasping and manipulation. Preliminary experiments have been performed to evaluate the hand. Results show that the hand can perform various grasps and in-hand manipulation, while the structure can withstand severe disarticulation. This suggests that the proposed design can be a viable solution for robust and dexterous prosthetic hands.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.