The global interest in renewable energy sources has increased the attention to the manufacturing of wind turbine towers, since they are largely diffused in seismic areas too. Different types of towers have been produced in recent years. Among them, the truss structures assure a reduced mass and the modular characteristics necessary for easy transportation. Reduced costs of production, installation and maintenance are typical of these structures. Nonlinear dynamics is an efficient framework to analyze structures subjected to variable actions, i.e. to assess the seismic safety of wind turbine towers in case of earthquake actions. This study outlines a procedure to evaluate the post-elastic behavior of truss towers for wind turbines. Rigid-plastic behaviour is taken into account to develop approximate solutions for the problem of a tower modeled as a vertical cantilever beam and subjected to harmonic base motion. A comparison with the results of a finite element model is proposed.

Dynamic shear behaviour of truss towers for wind turbines

Guadagnuolo, M.;
2018

Abstract

The global interest in renewable energy sources has increased the attention to the manufacturing of wind turbine towers, since they are largely diffused in seismic areas too. Different types of towers have been produced in recent years. Among them, the truss structures assure a reduced mass and the modular characteristics necessary for easy transportation. Reduced costs of production, installation and maintenance are typical of these structures. Nonlinear dynamics is an efficient framework to analyze structures subjected to variable actions, i.e. to assess the seismic safety of wind turbine towers in case of earthquake actions. This study outlines a procedure to evaluate the post-elastic behavior of truss towers for wind turbines. Rigid-plastic behaviour is taken into account to develop approximate solutions for the problem of a tower modeled as a vertical cantilever beam and subjected to harmonic base motion. A comparison with the results of a finite element model is proposed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/401931
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact