The exploitation of Cloud infrastructure in Big Data management is appealing because of costs reductions and potentiality of storage, network and computing resources. The Cloud can consistently reduce the cost of analysis of data from different sources, opening analytics to big storages in a multi-cloud environment. Anyway, creating and executing this kind of service is very complex since different resources have to be provisioned and coordinated depending on users’ needs. Orchestration is a solution to this problem, but it requires proper languages and methodologies for automatic composition and execution. In this work we propose a methodology for composition of services used for analyses of different Big Data sources: in particular an Orchestration language is reported able to describe composite services and resources in a multi-cloud environment.
A MAS model for reaching goals in critical systems
Moscato, Francesco
2019
Abstract
The exploitation of Cloud infrastructure in Big Data management is appealing because of costs reductions and potentiality of storage, network and computing resources. The Cloud can consistently reduce the cost of analysis of data from different sources, opening analytics to big storages in a multi-cloud environment. Anyway, creating and executing this kind of service is very complex since different resources have to be provisioned and coordinated depending on users’ needs. Orchestration is a solution to this problem, but it requires proper languages and methodologies for automatic composition and execution. In this work we propose a methodology for composition of services used for analyses of different Big Data sources: in particular an Orchestration language is reported able to describe composite services and resources in a multi-cloud environment.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.