This paper introduces a new technique for clustering seismic events based on processing, in time-frequency domain, the waveforms recorded by seismographs. The detection of clusters of waveforms is performed by a k-means like algorithm which analyzes, at each iteration, the time-frequency content of the signals in order to optimally remove the non discriminant components which should compromise the grouping of waveforms. This step is followed by the allocation and by the computation of the cluster centroids on the basis of the filtered signals. The effectiveness of the method is shown on a real dataset of seismic waveforms.

Time-frequency filtering for seismic waves clustering

Balzanella, Antonio
Methodology
;
2014

Abstract

This paper introduces a new technique for clustering seismic events based on processing, in time-frequency domain, the waveforms recorded by seismographs. The detection of clusters of waveforms is performed by a k-means like algorithm which analyzes, at each iteration, the time-frequency content of the signals in order to optimally remove the non discriminant components which should compromise the grouping of waveforms. This step is followed by the allocation and by the computation of the cluster centroids on the basis of the filtered signals. The effectiveness of the method is shown on a real dataset of seismic waveforms.
2014
Balzanella, Antonio; Adelfio, Giada; Chiodi, Marcello; Dâ alessandro, Antonino; Luzio, Dario
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/386765
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact