As many real world systems evolve according to phenomena characterized by a continuous time dependency, literature studied several approaches to correctly capture all their aspects. Since their analysis is not trivial, different high level approaches have been proposed, such as classical pure mathematical analysis or tool-oriented frameworks like Fluid Stochastic Petri Nets. Each approach has its specific purposes and naturally addresses some application field. This paper instead focuses on the simulation of models written in a custom Hybrid Systems (HS) formalism. The key aspect of this work is focused on the use within a framework called SIMTHESys of a function describing how the fluid variables evolve, providing more efficient simulation with respect to traditional approaches.

Simulating hybrid systems within SIMTHESys multi-formalism models

IACONO, Mauro
2016

Abstract

As many real world systems evolve according to phenomena characterized by a continuous time dependency, literature studied several approaches to correctly capture all their aspects. Since their analysis is not trivial, different high level approaches have been proposed, such as classical pure mathematical analysis or tool-oriented frameworks like Fluid Stochastic Petri Nets. Each approach has its specific purposes and naturally addresses some application field. This paper instead focuses on the simulation of models written in a custom Hybrid Systems (HS) formalism. The key aspect of this work is focused on the use within a framework called SIMTHESys of a function describing how the fluid variables evolve, providing more efficient simulation with respect to traditional approaches.
2016
Barbierato, Enrico; Gribaudo, Marco; Iacono, Mauro
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/364803
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact