"\"In this paper we propose an extended version of a model-based strategy for clustering spatial functional data. The strategy, we refer, aims simultaneously to classify spatially dependent curves and to obtain a spatial functional model prototype for each cluster. The fit of these models implies to estimate a variogram function, the trace variogram function. Our proposal is to introduce an alternative estimator for the trace-variogram function: a kernel variogram estimator. This works better to adapt spatial varying features of the functional data pattern. Experimental comparisons show this approach has some advantages over the previous one. \""
Clustering Spatial Functional Data: A Method Based on a non parametric variogram estimation
ROMANO, Elvira;VERDE, Rosanna;
2011
Abstract
"\"In this paper we propose an extended version of a model-based strategy for clustering spatial functional data. The strategy, we refer, aims simultaneously to classify spatially dependent curves and to obtain a spatial functional model prototype for each cluster. The fit of these models implies to estimate a variogram function, the trace variogram function. Our proposal is to introduce an alternative estimator for the trace-variogram function: a kernel variogram estimator. This works better to adapt spatial varying features of the functional data pattern. Experimental comparisons show this approach has some advantages over the previous one. \""I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.