"\"In this paper we propose an extended version of a model-based strategy for clustering spatial functional data. The strategy, we refer, aims simultaneously to classify spatially dependent curves and to obtain a spatial functional model prototype for each cluster. The fit of these models implies to estimate a variogram function, the trace variogram function. Our proposal is to introduce an alternative estimator for the trace-variogram function: a kernel variogram estimator. This works better to adapt spatial varying features of the functional data pattern. Experimental comparisons show this approach has some advantages over the previous one. \""

Clustering Spatial Functional Data: A Method Based on a non parametric variogram estimation

ROMANO, Elvira;VERDE, Rosanna;
2011

Abstract

"\"In this paper we propose an extended version of a model-based strategy for clustering spatial functional data. The strategy, we refer, aims simultaneously to classify spatially dependent curves and to obtain a spatial functional model prototype for each cluster. The fit of these models implies to estimate a variogram function, the trace variogram function. Our proposal is to introduce an alternative estimator for the trace-variogram function: a kernel variogram estimator. This works better to adapt spatial varying features of the functional data pattern. Experimental comparisons show this approach has some advantages over the previous one. \""
2011
Romano, Elvira; Verde, Rosanna; Cozza, V.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/321616
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact