"Plants are constantly exposed to changes in environmental conditions. When these changes are rapid and extreme, plants generally perceive them as stresses. Abiotic stresses are the most serious factors limiting the productivity of agricultural crops, with adverse effects on germination, plant vigour and crop yield. Responses to abiotic stresses are not linear pathways, but are complicated integrated circuits involving the interaction of additional cofactors and\/or signalling molecules to coordinate a specified response to a given stimulus. The regulation of these responses requires proteins operating in signal transduction pathways, such as transcriptional factors, which modulate gene expression by binding to specific DNA sequences in the promoters of respective target genes. This type of transcriptional regulatory system is called regulon. At least four different regulons that are active in response to abiotic stresses have been identified. Dehydration-responsive element binding protein 1 (DREB1)\/C-repeat binding factor (CBF) and DREB2 regulons function in ABA-independent gene expression, whereas the ABA-responsive element (ABRE) binding protein (AREB)\/ABRE binding factor (ABF) regulon functions in ABA-dependent gene expression. In addition to these major pathways, other regulons, including the NAC and MYB\/MYC regulons are involved in abiotic stress-responsive gene expression. Transcription factors (TFs) are powerful targets for genetic engineering in abiotic stress resistance in crop plants and many studies have been done in the last two decades on this topic. The aim of this book chapter is to give a comprehensive and up-to-date literature review in this field."

Plants are constantly exposed to changes in environmental conditions. When these changes are rapid and extreme, plants generally perceive them as stresses. Abiotic stresses are the most serious factors limiting the productivity of agricultural crops, with adverse effects on germination, plant vigour and crop yield. Responses to abiotic stresses are not linear pathways, but are complicated integrated circuits involving the interaction of additional cofactors and/or signalling molecules to coordinate a specified response to a given stimulus. The regulation of these responses requires proteins operating in signal transduction pathways, such as transcriptional factors, which modulate gene expression by binding to specific DNA sequences in the promoters of respective target genes. This type of transcriptional regulatory system is called regulon. At least four different regulons that are active in response to abiotic stresses have been identified. Dehydration-responsive element binding protein 1 (DREB1)/C-repeat binding factor (CBF) and DREB2 regulons function in ABA-independent gene expression, whereas the ABA-responsive element (ABRE) binding protein (AREB)/ABRE binding factor (ABF) regulon functions in ABA-dependent gene expression. In addition to these major pathways, other regulons, including the NAC and MYB/MYC regulons are involved in abiotic stress-responsive gene expression. Transcription factors (TFs) are powerful targets for genetic engineering in abiotic stress resistance in crop plants and many studies have been done in the last two decades on this topic. The aim of this book chapter is to give a comprehensive and up-to-date literature review in this field.

Transcription factors and genes in abiotic stress

WOODROW, Pasqualina
Writing – Review & Editing
;
FUGGI, Amodio;CARILLO, Petronia
Writing – Review & Editing
2012

Abstract

Plants are constantly exposed to changes in environmental conditions. When these changes are rapid and extreme, plants generally perceive them as stresses. Abiotic stresses are the most serious factors limiting the productivity of agricultural crops, with adverse effects on germination, plant vigour and crop yield. Responses to abiotic stresses are not linear pathways, but are complicated integrated circuits involving the interaction of additional cofactors and/or signalling molecules to coordinate a specified response to a given stimulus. The regulation of these responses requires proteins operating in signal transduction pathways, such as transcriptional factors, which modulate gene expression by binding to specific DNA sequences in the promoters of respective target genes. This type of transcriptional regulatory system is called regulon. At least four different regulons that are active in response to abiotic stresses have been identified. Dehydration-responsive element binding protein 1 (DREB1)/C-repeat binding factor (CBF) and DREB2 regulons function in ABA-independent gene expression, whereas the ABA-responsive element (ABRE) binding protein (AREB)/ABRE binding factor (ABF) regulon functions in ABA-dependent gene expression. In addition to these major pathways, other regulons, including the NAC and MYB/MYC regulons are involved in abiotic stress-responsive gene expression. Transcription factors (TFs) are powerful targets for genetic engineering in abiotic stress resistance in crop plants and many studies have been done in the last two decades on this topic. The aim of this book chapter is to give a comprehensive and up-to-date literature review in this field.
2012
Woodrow, Pasqualina; Pontecorvo, G; Ciarmiello, Lf; Annunziata, Mg; Fuggi, Amodio; Carillo, Petronia
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/320598
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 14
social impact