A growing number of applications generates massive streams of data which are on-line collected and potentially unbounded in size. To cope with the high dimensionality of data, several strategies for dimensionality reduction have been proposed. In this paper we introduce a new approach to represent an append only data stream into a reduced space. The main aim is to transform a real valued data stream into a string of symbols. The string includes a level component and a shape component allowing to get a better representation of data while maintaining a strong compression ratio.

Dimensionality reduction techniques for streaming time series: a new symbolic approach

BALZANELLA, Antonio;IRPINO, Antonio;VERDE, Rosanna
2010

Abstract

A growing number of applications generates massive streams of data which are on-line collected and potentially unbounded in size. To cope with the high dimensionality of data, several strategies for dimensionality reduction have been proposed. In this paper we introduce a new approach to represent an append only data stream into a reduced space. The main aim is to transform a real valued data stream into a string of symbols. The string includes a level component and a shape component allowing to get a better representation of data while maintaining a strong compression ratio.
2010
Balzanella, Antonio; Irpino, Antonio; Verde, Rosanna
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/218121
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact