Photodetectors are of great interest in several technological applications thanks to their capability to convert an optical signal into an electrical one through light-matter interactions. In particular, broadband photodetectors are used in multiple applications such as environmental monitoring, imaging, fire detection, and astronomical observations. We present a two-dimensional photodiode heterojunction based on reduced graphene oxide (rGO) deposited on an n-type Silicon substrate. We report on the electro-optical properties of the device that have been measured in dark and light conditions into a spectral range from UV to IR. The room temperature current–voltage (I–V) measurements of rGO/n-Si photodetector exhibits a reverse saturation current linearly dependent on the light power. The main figures of merit of the photodetector such as linearity and responsivity have been evaluated and compared with the recent progress obtained substituting the rGO with a graphene single layer (Gr) on the similar n-Si substrate. The photoconductive properties and analysis of the two devices are presented and discussed. Finally, the experimental results demonstrate the feasibility of the rGO/n-Si and Gr/n-Si device to detect light from UV to IR light, nominating graphene-based heterojunction as a novel candidate for the realization of new broadband photodetectors.

A novel broadband photodetector realized using graphene based heterojunction on a silicon substrate

Casalino, Maurizio;Crisci, Teresa;Ruggiero, Berardo;Silvestrini, Paolo;
2023

Abstract

Photodetectors are of great interest in several technological applications thanks to their capability to convert an optical signal into an electrical one through light-matter interactions. In particular, broadband photodetectors are used in multiple applications such as environmental monitoring, imaging, fire detection, and astronomical observations. We present a two-dimensional photodiode heterojunction based on reduced graphene oxide (rGO) deposited on an n-type Silicon substrate. We report on the electro-optical properties of the device that have been measured in dark and light conditions into a spectral range from UV to IR. The room temperature current–voltage (I–V) measurements of rGO/n-Si photodetector exhibits a reverse saturation current linearly dependent on the light power. The main figures of merit of the photodetector such as linearity and responsivity have been evaluated and compared with the recent progress obtained substituting the rGO with a graphene single layer (Gr) on the similar n-Si substrate. The photoconductive properties and analysis of the two devices are presented and discussed. Finally, the experimental results demonstrate the feasibility of the rGO/n-Si and Gr/n-Si device to detect light from UV to IR light, nominating graphene-based heterojunction as a novel candidate for the realization of new broadband photodetectors.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/531689
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact