This research investigated on the tensile properties of Additive Manufacturing (AM) PolyEther Ether Ketone (PEEK) under different printing and post processing conditions, with a focus on providing insights for future fatigue tests. PEEK is a high-performance thermoplastic material with excellent mechanical properties that is widely used in many industries. In this study, the miniFactory Ultra 3D printer, based on Fused Filament Fabrication (FFF) technology, was used to fabricate PEEK specimens so as to assess the influence of printing parameters on the mechanical performances. Three key factors were considered: layer height, infill pattern and annealing as possible post-processing treatment. The variation of layer height and infill pattern aimed at evaluating their effects on the tensile properties, whereas annealing treatment was performed to assess the influence of residual stresses. The results indicated that infill pattern significantly affected the tensile properties, whereas annealing did not improve properties of specimens with triangular infill pattern. This research provides valuable insights for industries such as aerospace, automotive, and healthcare, where AM PEEK components are increasingly utilized.
Investigation on tensile properties of FFF PEEK: Effects of printing parameters and post-processing treatment
Greco A.
;De Luca A.;Gerbino S.
2024
Abstract
This research investigated on the tensile properties of Additive Manufacturing (AM) PolyEther Ether Ketone (PEEK) under different printing and post processing conditions, with a focus on providing insights for future fatigue tests. PEEK is a high-performance thermoplastic material with excellent mechanical properties that is widely used in many industries. In this study, the miniFactory Ultra 3D printer, based on Fused Filament Fabrication (FFF) technology, was used to fabricate PEEK specimens so as to assess the influence of printing parameters on the mechanical performances. Three key factors were considered: layer height, infill pattern and annealing as possible post-processing treatment. The variation of layer height and infill pattern aimed at evaluating their effects on the tensile properties, whereas annealing treatment was performed to assess the influence of residual stresses. The results indicated that infill pattern significantly affected the tensile properties, whereas annealing did not improve properties of specimens with triangular infill pattern. This research provides valuable insights for industries such as aerospace, automotive, and healthcare, where AM PEEK components are increasingly utilized.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.