This paper presents a power dependent frequency domain model (FDM) of an inverter-driven heat pump (Heating, Ventilation and Air-Conditioning) system for use in power system harmonic analysis. The FDM approach considered is the frequency coupling matrix (FCM) technique. Starting from a previously presented and experimentally validated time domain model (TDM), a detailed study on the impact of the operating power on the input current produces a set of FCMs. It is shown that the power dependent changes in the FCM elements can be accurately approximated using a polynomial function. As a consequence of this result, the power dependent changes are incorporated into the FDM using two different implementations - a (discretized) look-up table and simple (continuous) analytical functions - and compared. Monte Carlo Simulations confirm the ability of the power dependent FDMs to reproduce the input current characteristics of the TDM.

Development of a Power Dependent Frequency Domain Model of an Inverter-driven Heat Pump

R. Langella;A. Testa;
2022

Abstract

This paper presents a power dependent frequency domain model (FDM) of an inverter-driven heat pump (Heating, Ventilation and Air-Conditioning) system for use in power system harmonic analysis. The FDM approach considered is the frequency coupling matrix (FCM) technique. Starting from a previously presented and experimentally validated time domain model (TDM), a detailed study on the impact of the operating power on the input current produces a set of FCMs. It is shown that the power dependent changes in the FCM elements can be accurately approximated using a polynomial function. As a consequence of this result, the power dependent changes are incorporated into the FDM using two different implementations - a (discretized) look-up table and simple (continuous) analytical functions - and compared. Monte Carlo Simulations confirm the ability of the power dependent FDMs to reproduce the input current characteristics of the TDM.
2022
978-1-6654-1639-9
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/498538
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact