Internet Service Providers technical support needs personal data to predict potential anomalies. In this paper, we performed a comparative study of forecasting performance using raw data and anonymized data, in order to assess how much performance may vary, when plain personal data are replaced by anonymized personal data.

Dataset Anonimyzation for Machine Learning: An ISP Case Study

Campanile L.;Marulli F.;
2021

Abstract

Internet Service Providers technical support needs personal data to predict potential anomalies. In this paper, we performed a comparative study of forecasting performance using raw data and anonymized data, in order to assess how much performance may vary, when plain personal data are replaced by anonymized personal data.
2021
978-3-030-86959-5
978-3-030-86960-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/489397
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact