In this work we propose and show a general framework of distribution-free predictive inference for Spatio-Functional Regression models using Conformal Prediction techniques. In particular we focus on Geographically Weighted Regression (GWR) and Heteroskedastic Geographically Weighted Regression (HGWR) with two novel choices of non-conformity measures to compute simultaneous prediction bands.

Conformal prediction for spatial functional regression models

Andrea Diana
Membro del Collaboration Group
;
Elvira Romano
Membro del Collaboration Group
;
Antonio Irpino
Membro del Collaboration Group
2022

Abstract

In this work we propose and show a general framework of distribution-free predictive inference for Spatio-Functional Regression models using Conformal Prediction techniques. In particular we focus on Geographically Weighted Regression (GWR) and Heteroskedastic Geographically Weighted Regression (HGWR) with two novel choices of non-conformity measures to compute simultaneous prediction bands.
2022
9788891932310
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/488524
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact