In this paper we present an interpolation-based decoding algorithm to decode a family of maximum rank distance codes proposed recently by Trombetti and Zhou. We employ the properties of the Dickson matrix associated with a linearized polynomial with a given rank and the modified Berlekamp-Massey algorithm in decoding. When the rank of the error vector attains the unique decoding radius, the problem is converted to solving a quadratic polynomial, which ensures that the proposed decoding algorithm has polynomial-time complexity.

On interpolation-based decoding of a class of maximum rank distance codes

Zullo F.
2021

Abstract

In this paper we present an interpolation-based decoding algorithm to decode a family of maximum rank distance codes proposed recently by Trombetti and Zhou. We employ the properties of the Dickson matrix associated with a linearized polynomial with a given rank and the modified Berlekamp-Massey algorithm in decoding. When the rank of the error vector attains the unique decoding radius, the problem is converted to solving a quadratic polynomial, which ensures that the proposed decoding algorithm has polynomial-time complexity.
2021
978-1-5386-8209-8
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/458845
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact